
E(2) - Equivariant Steerable CNNs

Gabriele Cesa

September 10, 2020





MSC ARTIFICIAL INTELLIGENCE

MASTER THESIS

E(2) - Equivariant Steerable CNNs
A GENERAL SOLUTION AND IMPLEMENTATION OF EQUIVARIANCE TO PLANAR ISOMETRIES

by

GABRIELE CESA

11887524

September 10, 2020

36 EC
January - August 2019

Supervisor:
MSc MAURICE WEILER

Assessors:
Prof. MAX WELLING

Prof. ERIK J. BEKKERS

INFORMATICS INSTITUTE

QUVA Lab, AMLAB



Gabriele Cesa

E(2) - Equivariant Steerable CNNs

A general solution and implementation of equivariance to planar isometries

January - August 2019

Assessors: Max Welling, Erik J. Bekkers

Supervisor: Maurice Weiler

University of Amsterdam

QUVA Lab, AMLAB

Informatics Institute

Science Park 904

1098 XH and Amsterdam



Abstract

In the latest years, equivariant neural networks have received increasing attention in
the deep learning community, as the recent growth in the family of equivariant archi-
tectures in the literature demonstrates. Since images are among the most common
types of data, this trend is especially notable in the planar - 2-dimensional - setting
where rotations and reflections, beyond translations, can be considered. In this
thesis, we provide a unified description of E(2)-equivariant Convolutional Neural
Networks using the framework of Steerable CNNs. In this framework, the feature
spaces of CNNs are associated with well-defined transformation laws, defined by
group representations. Using some important results in Group Representation Theory,
this translates into constraints on the convolution kernels which map between differ-
ent feature spaces. By reducing these constraints to constraints under irreducible
representations of a group, we solve these constraints for arbitrary representations
of that group. Therefore, we provide general solutions to the irreducible kernel
space constraints for all subgroups of the Euclidean group E(2). These solutions
allow us to not only re-implement a wide range of previously proposed models but
also to design new ones and perform a systematic evaluation of them. Finally, by
replacing conventional convolution with E(2)-steerable convolution in some of the
most popular CNN architectures, we achieve significant improvements on CIFAR-10,
CIFAR-100 and STL-10.
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1Introduction

„ About ten years ago, some computer scientists
came by and said they heard we have some really
cool problems. They showed that the problems
are NP-complete and went away.

— Joe Felsenstein

1.1 Motivation and Problem Statement

In recent years, imposing equivariance to the action of symmetry groups was shown
to be a powerful inductive bias in the design of neural network architectures. The
equivariance of a network’s layers guarantees a desired transformation behavior of
convolutional features under corresponding transformations of their inputs, thereby
achieving improved generalization capabilities and sample complexities compared
to a conventional design. Because of their high practical relevance, a large number
of rotation- and reflection- equivariant architectures for planar images have been
suggested in the literature. Nevertheless, no systematic study, which reproduces and
compares all these works, has been performed yet.

Steerable CNNs, initially introduced in [13] and later extended in [44, 10, 9, 11],
represent a first step toward this goal by defining a very general notion of equiv-
ariant convolutions on homogeneous spaces. In particular, E(2)-steerable CNNs
describe rotation- and reflection-equivariant convolutions on the image plane R2.
The feature spaces of steerable CNNs are interpreted as spaces of feature fields, i.e.,
features associated with a specific transformation law that defines their field type. A
transformation of the model’s input results in another in each feature field of the
network according to its own law. Mathematically, the transformations considered
form a group and a feature field’s law is determined by a group representation. In
order to guarantee the specified transformation laws of feature spaces, each layer
in the network needs to be compatible with the type of its own input and output
spaces. In the particular case of convolution layers, the kernels are subject to a linear
constraint, which depends on the group representations of the spaces. Previous
works, including but not limited to [13, 44], have already solved this constraint for
specific groups and representations. However, no general solution strategy has been
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proposed before. In this work, we present a general method to automatically solve
the kernel space constraint defined by any pair of representations by reducing it to
much simpler constraints under single irreducible representations.

In particular, we solve the kernel constraint defined by arbitrary representations of
the orthogonal group O(2) and its subgroups. Our method enables us to re-interpret
a broad family of pre-existing equivariant models - including regular GCNNs [12,
45, 22, 2, 18, 27], classical Steerable CNNs [13], Harmonic Networks [48], gated
Harmonic Networks [44], Vector Field Networks [30], (roto-translational) Scattering
Transforms [39, 41, 5, 40, 33] - and design entirely new ones in the same general
framework. Besides, we can create heterogeneous architectures by combining field
types previously used in different networks.

Moreover, we introduce the group restriction operation, which enables one to adjust
each layer’s equivariance to the symmetries existing at the scale of its field of view.
This construction can be helpful, for instance, when working with natural images,
which have a typical global orientation but where low-level, local patterns often
exhibit rotational symmetry. Therefore, group restriction allows equivariant networks
to leverage the emerging symmetries in the data at smaller scales.

Although the theory presented can describe any equivariant steerable CNN, it does
not favor any specific choice of group representations or non-linearities. For this
reason, we perform an extensive benchmark study, comparing different combinations
of equivariance groups, representations and non-linear layers. We experiment
on MNIST 12k, rotated MNIST SO(2) and reflected and rotated MNIST O(2) to
examine the effect of different symmetries in the data. Consequently, we validate our
equivariant convolution as a drop-in replacement for the conventional convolution
layer on CIFAR10, CIFAR100 and STL-10, and we find significant improvements over
the non-equivariant baselines.

Apart from the obvious image processing applications, the methods and the frame-
work we described are relevant for a more general class of problems. Indeed, the
strategy we proposed to solve the kernel constraints can generally be used to solve
the constraints required by steerable CNNs on homogeneous spaces [10, 9] or by
gauge equivariant CNNs on Riemannian manifolds [11]. In particular, when con-
sidering signals defined over a 2-dimensional manifold equipped with a subgroup
H ≤ O(2) as a structure group, a gauge equivariant CNN enforces precisely the same
constraints studied in this work. Thus, our solutions and our findings can be directly
applied to e.g. spherical CNNs [8, 11, 26, 19, 34, 23] and many geometric deep
learning architectures [35, 32, 4, 3].
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1.2 Outline

Chapter 2 introduces all mathematical concepts required to understand the theory
of steerable CNNs as well as the notation used throughout this thesis. It starts
with a brief introduction to Group Theory in Sec. 2.1 and proceeds with more
advanced results from Group Representation Theory and Character Theory in Sec. 2.3
and Sec. 2.6 respectively. Finally, it includes a short overview of the groups here
considered together with their representation theory in Sec. 2.7.

Chapter 3 focuses on Steerable CNNs. It first presents the concept of group con-
volution and the more familiar Group-Convolutional Neural Networks (GCNNs) in
Sec. 3.1. Then, the theory of Euclidean steerable CNNs as described in [44] is briefly
reviewed in Sec. 3.2 and Sec. 3.3, where the concepts of feature fields and steerable
convolution are explained. Sec. 3.4 and Sec. 3.5 present our general strategy to
solve the kernel constraints associated to arbitrary representations by decomposing
them into their irreducible components. Most of the related works can be seen as
specific choices of groups, representations and non-linearities in the steerable CNNs
framework. For this reason, we choose to address related works in Sec. 3.6. Sec 3.7
describes the group restriction operation as a means to enforce an adaptive level of
equivariance in the model and exploit local symmetries in non globally symmetric
data.

The implementation details are discussed in Chapter 4. In particular, we describe
how steerable convolution can be efficiently implemented in Sec. 4.1. We publish our
code as Python library based on PyTorch at https://github.com/QUVA-Lab/e2cnn.
In Sec. 4.4, we give a short overview of the library e2cnn.

Finally, Chapter 5 includes an experimental analysis of steerable CNNs. We first
benchmark a broad range of equivariant models on different MNIST variations in
Sec. 5.1. We then replace conventional convolution with steerable convolution in a
popular CNNs architecture and compare the relative improvement in performance
on CIFAR10 and CIFAR100 in Sec. 5.5 and on STL-10 in Sec. 5.6.

1.2 Outline 3

https://github.com/QUVA-Lab/e2cnn




2Mathematical Preliminaries

„In mathematics you don’t understand things.
You just get used to them.

— John von Neumann

Here, we introduce the main definitions and concepts from Group Theory and Group
Representation Theory, which are needed to understand the framework equivariant
neural networks are built on. All concepts will be accompanied by a number of
examples to clarify their meanings and introduce the specific instances we will use
in the next chapters.

2.1 Group Theory

Definition 1: Group

A group is a pair (G, ·) containing a set G and a binary operation

· : G×G→ G, (h, g) 7→ h · g

satisfying the following group axioms:

• Associativity: ∀a, b, c ∈ G a · (b · c) = (a · b) · c

• Identity: ∃e ∈ G : ∀g ∈ G g · e = e · g = g

• Inverse: ∀g ∈ G ∃g−1 ∈ G : g · g−1 = g−1 · g = e

The binary operation · is called the group law. It can be proven that the inverse
elements g−1 of an element g and the identity element e are unique.

In order to reduce the notation, it is common to write hg for h · g and to refer to
the whole group with G when this is not ambiguous. We can also use the power
notation

gn = g · g · g · . . . · g︸ ︷︷ ︸
n times

to abbreviate the combination of the element g with itself n times.
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Example 1: Real numbers

The set R together with the binary operation + forms the group (R,+) of
the real numbers. Indeed, the sum is associative and has identity element 0.
Moreover, each element x has inverse −x such that x+ (−x) = (−x) + x = 0.

Example 2: General Linear Group

The set GL(Rn) of all invertible real n× n matrices together with the usual
matrix multiplication is a group. The matrix multiplication is associative and
the matrix In (the n×n identity matrix) is the identity element. By definition,
every matrix in GL(Rn) has an inverse.

Definition 2: Order of a Group

The order of a group G is the cardinality of its set and it is indicated by |G|.

Definition 3: Finite Group

A finite group is a group with a finite number of elements.

Note that the definition of a group in Def. 1 does not require the operation to be
commutative. Groups with this property form a special family:

Definition 4: Abelian Group

An abelian group (G, ·) is a group whose group law additionally satisfies the
commutativity axiom:

• Commutativity: ∀a, b ∈ G a · b = b · a

Example 3: Z /nZ

The set {0, 1, 2, . . . , n− 2, n− 1} together with the sum modulo n

+ : (a, b) 7→ a+ b mod n

forms the group Z /nZ of integers modulo n. The group has order n ∈ N+

and, therefore, it is a finite group. Moreover, the addition is commutative,
hence this group is abelian.

6 Chapter 2 Mathematical Preliminaries



Definition 5: Group Homomorphism

Given two groups (G, ·) and (H, ∗), a map f : G→ H is a group homomor-
phism from G to H if

∀a, b ∈ G f(a · b) = f(a) ∗ f(b) .

It follows that the function f necessarily maps the identity of G to the identity of
H, i.e. f(eG) = eH . A group homomorphism preserves also the inverse of each
elements, i.e. ∀g ∈ G f(g−1) = f(g)−1.

It is worth mentioning two special cases of group homomorphism:

Definition 6: Group Isomorphism

A group homomorphism f fromG toH is a group isomorphism if it is bijective
(surjective and injective), i.e. if and only if:

∀h ∈ H, ∃! g ∈ G : f(g) = h .

Definition 7: Group Automorphism

A group homomorphism f from G to G itself is called a group endomorphism.

A group endomorphism which is also bijective (i.e. an isomorphism) is called a
group automorphism.

Given two groups H and G, if there exists an isomorphisms between them, then the
two groups are said isomorphic.

2.1 Group Theory 7



Example 4: Cyclic Group

The set of all the complex n-th roots of the unity {eik
2π
n | 0 ≤ k < n} forms a

group under multiplication. This group is isomorphic to the group Z /nZ seen
in the previous example. Indeed, we can define an homomorphism f between
them as

f : eik
2π
n 7→ k .

One can verify this is indeed an isomorphism.

This group is also called Cyclic Group of order n, often indicated as Cn. More
abstractly, this group can be defined as

CN = {e = g0, g, g2, . . . , gn−1|gi = gj ⇐⇒ i ≡ j mod N} .

Note that any element of the group can be identified by a power of the
generating element g. This group will appear often in the rest of this work.

Groups are especially useful to describe the symmetries of a space. This is indeed the
case in this work; here, in particular, we are interested in describing the symmetries
of signals and functions defined over the plane. The symmetries of a space are
mathematically described as the action of a group on it.

Definition 8: Group Action and G-Space

Given a group G, a (left) G-space X is a set X equipped with a group action
G×X → X, (g, x) 7→ g.x, i.e. a map satisfying the following axioms:

• identity: ∀x ∈ X e.x = x

• compatibility: ∀a, b ∈ G ∀x ∈ X a.(b.x) = (ab).x

In this case, G is said to act on X.

For any group (G, ·), its group law · : G×G→ G trivially defines a group action of
the group on itself (X = G).

8 Chapter 2 Mathematical Preliminaries



Example 5

Consider the two-dimensional real space (the euclidean plane) X = R2.
We can define an action of the group (R,+) on this space as:

∀t ∈ (R,+),∀(x, y) ∈ X = R2 t, (x, y) 7→ t.(x, y) = (x+ t, y)

where the group elements act by translating horizontally the points in the
plane.

Example 6: Orthogonal Group

One of the main groups we are interested in is the special orthogonal group
SO(2) which contains all the planar rotations. The action of a rotation
rθ ∈ SO(2) by an angle θ can be defined as:

∀x ∈ X = R2 rθ, x 7→ rθ.x = ψ(θ)x

where ψ(θ) is the rotation matrix

ψ(θ) =
[
cos (θ) 9 sin (θ)
sin (θ) cos (θ)

]

while ψ(θ)x is the usual matrix-vector product. The group SO(2) is also the
group of all 2× 2 orthogonal real matrices with positive determinat

SO(2) = {O ∈ R2×2 |OTO = id2×2 and det(O) = 1} .

Another group we will consider often is the orthogonal group O(2) which
contains all the planar rotations and reflections. The action of a rotation
rθ ∈ O(2) is defined as before for SO(2). Instead, a reflection f reflects the
points around the x-axis by inverting the sign of the first coordinate of a point:

∀x ∈ X = R2 f, x 7→ f.x =
[
−1 0

0 1

]
x

The group O(2) is also the group of all 2× 2 orthogonal real matrices

O(2) = {O ∈ R2×2 |OTO = id2×2} .

Note that det(O) = ±1 for any O ∈ O(2).

For any specific element x ∈ X, one can ask where it is mapped by the action of the
group G.

2.1 Group Theory 9



Definition 9: Transitive Group Action

Given a group G with an action on a G-space X, if this action can move any
element of X to any of its other elements, i.e.

∀x, y ∈ X, ∃g ∈ G : y = g.x

this action is said to be transitive.

Example 7: Translation Group

Consider again the two-dimensional real space (the euclidean plane) X =
R2. The action of the group (R,+) described in Example 5 only translates
horizontally the points in the plane. It follows that there is no element of
(R,+) which map a point (x1, y1) to another point (x2, y2) with y1 6= y2. This
action is, therefore, not transitive.
On the other hand, we can consider the translation group (R2,+) with the
following action:

∀t ∈ (R2,+),∀(x, y) ∈ X = R2 t, (x, y) 7→ t.(x, y) = (x+ t1, y + t2) .

For any pair of points (x1, y1) and (x2, y2), there is always a translation
t = (x2−x1, y2− y1) ∈ (R2,+) which maps the first to the second. The action
of (R2,+) is, therefore, transitive over the space R2.

Generally, however, an element x ∈ X can be mapped to only a subset of X. This
subset is called the orbit of G through x and it is indicated as:

G.x = {g.x | g ∈ G} ⊆ X .

2.2 Quotient Groups, Cosets and Group Products

In this section we introduce some useful concepts which will be used later both
to describe steerable feature fields and to derive statistics on spaces containing
symmetries.

10 Chapter 2 Mathematical Preliminaries



Definition 10: Subgroup

Given a group (G, ·), a non-empty subset H ⊆ G is a subgroup of G if it
forms a group (H, ·) under the same group law, restricted to H.
For H to be a subgroup of G, it is necessary and sufficient that the restricted
group law and the inverse are closed in H, i.e.

• ∀a, b ∈ H a · b ∈ H

• ∀h ∈ H h−1 ∈ H

This is usually denoted as H ≤ G.

Any subgroup needs to include the identity element e. Moreover, any group has at
leas the trivial group and the group itself as subgroups.

Example 8

We have already introduced the group of continuous planar rotations SO(2)
and the cyclic group CN . Any cyclic group CN is a finite subgroup of SO(2)
and can be interpreted as the group of N rotations by angles which are integer
multiples of 2π

N .
Indeed, in a previous example, we have seen that the cyclic group CN is
isomorphic to the group of the N -th roots of the unity under multiplication
which, in turn, can be interpreted as rotations in the complex plane C.
The elements of the group CN can be identified as elements of SO(2) through
the following inclusion map:

CN → SO(2), gk 7→ rk 2π
N
.

Let G be a group and H < G a subgroup of G.

Definition 11: Cosets

A left coset of H in G is gH = {gh | h ∈ H} for an element g ∈ G.
Similarly, a right coset of H in G is Hg = {hg | h ∈ H} for an element g ∈ G.

Intuitively, the left (or right) coset of an element g is the set of all elements of G
reachable through the right (or left) action of elements h ∈ H < G. Therefore, a
coset contains the orbit of H through an element of G.

Cosets form a partitioning of the group G, i.e. they are disjoint and their union is
equal to the whole group G. It can be shown that all cosets have cardinality equal
to the order of H. Indeed, the cosets of H in G define equivalence classes over the

2.2 Quotient Groups, Cosets and Group Products 11



elements of G. Additionally, the coset of H through the identity element e is equal
to H itself, i.e. eH = H, and it is the only coset which is also a group (because the
identity only belongs to this coset).

Definition 12: Index

The index of H in G is the number of left (or right) cosets of H in G. More
precisely, it is the cardinality of the set {gH | g ∈ G}. The index of H in G is
denoted |G : H|.

In the case both G and H are finite groups, it can be shown (Lagrange’s theorem)
that

|G : H| = |G|
|H|

> 0 ∈ N .

Example 9

Given a cyclic group CN of order N , for any positive integer M such that M |N
("M divides N "), i.e. ∃p ∈ N : N = pM , the cyclic group CM of order M is a
subgroup of CN .
Indeed, the subset {g0, gp, g2p, . . . , g(M−1)p} of CN is closed under multiplica-
tion and inverse and it is isomorphic to CM . A left coset of CM in CN through
an element gk ∈ CN looks like

gk CM = {gkgtp = gk+tp | 0 ≤ t < M} .

Therefore, each coset has size M . Note also that if j ≡ k mod M , it holds
that gk CM = gj CM . The property of belonging to the same coset defines an
equivalence relation where each coset is an equivalence class. One can verify
that the elements e, g, g2, . . . , gp−1 define different cosets and that these are
all the existing cosets. It follows that |CN : CM | = p and, therefore, that
|CN : CM | = N

M .

Definition 13: Quotient Space

A quotient space (or cosets space) is the space of all left (or right) cosets of
H in G.
Precisely, the left quotient space is denoted as G/H = {gH | g ∈ G}, while
the right quotient space is denoted as H\G = {Hg | g ∈ G}.

Given a quotient space, it is natural to define a projection (called canonical projec-
tion)

p : G→ G/H, g 7→ p(g) = gH

that maps an element g ∈ G to its own coset.

12 Chapter 2 Mathematical Preliminaries



Definition 14: Section

A section of the quotient space G/H is a map s : G/H → G such that
s ◦ p = idG/H , i.e.

∀gH ∈ G/H p(s(gH)) = gH.

In other words, a section maps each coset to an element in that coset. Such element
can be thought as a representative of that coset. Note also that gH = s(gH)H.
This also enables us to identify any coset gH by its representative s(gH).

Note that we can always define an action of G on quotient spaces. Indeed, consider
a left quotient space G/H; we can define the left action of an element g ∈ G on an
element g′H ∈ G/H as:

g(g′H) = (gg′)H

Because of the properties of groups, this action is transitive (Def 9), i.e. any coset
can be reached by any other coset with some element g ∈ G. One can also verify
that this action is independent from the element g′ used to identify the coset g′H.
Another interesting property of these spaces is that they are always homogeneous
spaces.

Theorem 1: Homogeneous Space

An homogeneous space is a G-space with a transitive action of G.
Any homogeneous space is isomorphic to some quotient space G/H with the
transitive action of G over it.

Example 10: Sphere

The two dimensional sphere S2 is isomorphic to the quotient space
SO(3)/SO(2). Fixing an origin o ∈ S2, any point p ∈ S2 can be reached
with a 3D rotation rp ∈ SO(3). A rotation around the axis along the origin
o ∈ S2 is an element rθ ∈ SO(2) and does not move the origin o. Therefore,
any rotation rθ ∈ SO(2) around the origin o followed by a rotation rp ∈ SO(3)
will move the origin o to the same point p ∈ S2. Indeed, any point p ∈ S2 in
the sphere can be identified with a coset {rprθ | rθ ∈ SO(2)} ∈ SO(3)/SO(2).

A special case occurs when the subgroup H has the following property:

2.2 Quotient Groups, Cosets and Group Products 13



Definition 15: Normal Subgroup

Consider a group G and a subgroup H < G. If

∀g ∈ G gH = Hg

then H is a normal subgroup of G. In this case, we write H / G.

It follows that if H / G, then
G/H ∼= H\G

This enables us to endow a group structure on the quotient space by identifying the
coset eH with the identity and defining the product ∗ between two cosets:

∀gH, g′H ∈ G/H (gH) ∗ (g′H) = gHg′H = gg′HH = (gg′)H ∈ G/H

Again, it can be shown that this product does not depend on the elements g and g′

considered. In other words, any element of gH maps any element of g′H to some
element in gg′H. One can verify this operation satisfies the group axioms in Def. 1.

Definition 16: Quotient Group

If H / G, then the quotient space G/H is itself a group (quotient group)
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Example 11: Quotient Group

Consider the group of planar translations and rotations SE(2). An element of
tvrθ ∈ SE(2) is a rotation rθ ∈ SO(2) by an angle θ followed by a translation
tv ∈ (R2,+) by the vector v ∈ R2. The group SO(2) of rotations is a subgroup
of SE(2) while (R2,+) is a normal subgroup of SE(2).
Let’s first look at the left cosets of (R2,+) in SE(2), i.e. the quotient space:

SE(2)/(R2,+) = { tvrθ(R2,+) = rθtψ(−θ)v(R2,+) = rθ(R2,+) | tvrθ ∈ SE(2) }

= { rθ(R2,+) | rθ ∈ SO(2) } .

We notice its elements can be identified with elements of SO(2) by the map

f : SE(2)/(R2,+)→ SO(2), rθ(R2,+) 7→ s(rθ(R2,+)) = rθ .

Given a coset rα(R2,+) ∈ SE(2)/(R2,+), we can define an action on another
coset rβ(R2,+) by looking at the action of one of its elements rαtv:

(rαtv) rβ(R2,+) = rα+βtψ(−β)v (R2,+) = rα+β (R2,+) .

The result only depends on rα but not on the translation tv; therefore it is the
same for any element in rα(R2,+) chosen. This enables us to define a group
action on the quotient space SE(2)/(R2,+) (one can verify its invertibility
and associativity). We can also recognize the similarity of this action with the
group law of SO(2). Indeed, the quotient SE(2)/(R2,+) is isomorphic to the
group SO(2). We can verify the map f is an isomorphism. By construction, f
is bijective. We now show it is also a group homomorphis:

f
(
rα(R2,+) rβ(R2,+)

)
= f

(
rα rβ ({tψ(−β)v | v ∈ R2},+) (R2,+)

)
= f

(
rα rβ (R2,+)

)
= rα rβ

One may ask whether the quotient SE(2)/ SO(2) has the same property.

SE(2)/ SO(2) = { tvrθ SO(2) = tv SO(2) | tvrθ ∈ SE(2) }

Here, we can identify the elements of SE(2)/SO(2) with the elements of R2:

f : SE(2)/ SO(2)→ R2, tv SO(2) 7→ s(tv SO(2)) = v .

Note that here we did not write (R2,+) but we referred to R2 only as a set.
Indeed, a coset tv SO(2) does not act as a translation tv ∈ (R2,+) on the
other cosets. Different elements of the same coset tv SO(2) apply the same
translation by v but also rotate the input by different angles, mapping to
different cosets. Therefore, SE(2)/ SO(2) does not have a group structure.

2.2 Quotient Groups, Cosets and Group Products 15



So far, given a group we have described its subgroups and how they appear inside
the group. Now, given some smaller groups we show how they can be combined to
build new larger groups.

Definition 17: Direct Product

Given two groups (K, ∗) and (H,+), the direct product group (K ×H, ·) is
defined as the Cartesian product K ×H of the sets K and H together with
the following group law:

(k1, h1) · (k2, h2) = (k1 ∗ k2, h1 + h2) .

The direct product between H and K is usually denoted as K ×H.
One can easily verify that this construction satisfies the group axioms in Def 1.
This definition can be easily generalized to the direct product of more than
two groups.

Given a direct product K × H, the subsets {(eK , h)|h ∈ H} and {(k, eh)|k ∈ K}
form normal subgroups and are isomorphic to H and K, respectively. Any element
(k, h) ∈ K ×H can be uniquely decomposed as the product of an element of K and
an element of H, e.g. (k, h) = (eK , h) · (k, eH) = (k, eH) · (eK , h). Note also that the
elements of K commute with the elements H.

Example 12

Any element of the group (R2,+) of translations over the real plane can be
decomposed into a vertical and a horizontal translation. The group (R2,+) is
indeed isomorphic to the direct product (R,+)× (R,+) of two copies of the
group (R,+) of translations along a line.

The semi-direct product is a generalization of the direct product. While the direct
product factorizes a group in the product of two normal subgroups whose elements
commute with each other, in a semi-direct product only one of the subgroups needs
to be normal.
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Definition 18: Semi-Direct Product

Given two groups (N, ∗) and (H,+) and an action φ : H ×N → N of H on
N , the semi-direct product group N oφH is defined as the Cartesian product
N ×H equipped with the following binary operation:

(n1, h1) · (n2, h2) = (n1 ∗ φ(h1, n2), h1 + h2) .

Note that the resulting group depends on the map φ and that different maps
lead to different groups.
Like in a direct product, any element of a semi-direct product can be uniquely
identified by a pair of elements of the two subgroups.

The group N is a normal subgroup of the semi-direct product group, but H is not
necessarily normal. Moreover, when φ is the identity map on N for any h ∈ H, i.e.
∀ h ∈ H, n ∈ N, φ(h, n) = n, we obtain the previous direct product.

Example 13: Special Euclidean group SE(2)

The group SE(2) is an example of semi-direct product. In Ex. 11, we have seen
that SO(2) is a subgroup of SE(2) while (R2,+) is a normal subgroup. Any
element of SE(2) can be identified by a pair (tv, rθ) = tvrθ with tv ∈ (R2,+)
and rθ ∈ SO(2). The product of two elements is:

(tv1 , rθ1) · (tv2 , rθ2) = tv1rθ1tv2rθ2

= tv1tψ(θ1)v2rθ1rθ2

= (tv1tψ(θ1)v2 , rθ1rθ2)

= (tv1+ψ(θ1)v2 , rθ1+θ2)

We can identify the action

φ : (R2,+)× SO(2)→ (R2,+), (tv2 , rθ1) 7→ tψ(θ1)v2

Therefore:
SE(2) = (R2,+)oφ SO(2)

2.3 Group Representation Theory

In the context of deep learning, data and features are represented as numerical
vectors. For this reason, we are particularly interested in G-spaces that are vector
spaces and the group actions on them. Therefore, in this section, we will focus
on a particular type of group actions, linear group representations, which model
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abstract algebraic group elements via their action on some vector space, that is,
by representing them as linear transformations (matrices) on that space. Group
representations are studied in Representation theory and form the backbone of
Steerable CNNs since they describe the transformation laws of feature spaces. A
useful resource that covers most of the representation theory for finite groups
is [38].

Definition 19: Linear Group Representation

A linear group representation ρ of a group G on a vector space (representa-
tion space) V is a group homomorphism from G to the general linear group
GL(V ), i.e. it is a map

ρ : G→ GL(V ) such that ρ(g1g2) = ρ(g1)ρ(g2) ∀g1, g2 ∈ G .

Recall that, for V = Rn, GL(Rn) is the group of all real invertible n × n matrices,
see Example 2.

The requirement to be a homomorphism, i.e. to satisfy ρ(g1g2) = ρ(g1)ρ(g2), ensures
the compatibility of the matrix multiplication ρ(g1)ρ(g2) with the group composition
g1g2 which is necessary for a well defined group action. We want to emphasize
that group representations do not need to model the group faithfully (they are
homomorphisms but not necessarily isomorphisms).

Example 14: Trivial representation

A simple example is the trivial representation ρ : G→ GL(R) which maps any
group element to the identity, i.e. ∀g ∈ G ρ(g) = 1.

Example 15: Rotations matrices

The 2-dimensional rotation matrices

ψ : SO(2)→ GL(R2), rθ 7→ ψ(rθ) =
[
cos (θ) 9 sin (θ)
sin (θ) cos (θ)

]

are an example of a representation of the group SO(2) (the group of all planar
rotations).
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Definition 20: Equivalent representations

Two representations ρ and ρ′ on a vector space V are called equivalent (or
isomorphic) iff they are related by a change of basis Q ∈ GL(V ), i.e.

∀g ∈ G, ρ′(g) = Qρ(g)Q−1 .

Equivalent representations behave similarly since their composition is basis indepen-
dent as seen by

ρ′(g1)ρ′(g2) = Qρ(g1)Q−1Qρ(g2)Q−1 = Qρ(g1)ρ(g2)Q−1 .

Two representations can be combined by taking their direct sum.

Definition 21: Direct sums

Given representations ρ1 : G → GL(V1) and ρ2 : G → GL(V2), their direct
sum ρ1 ⊕ ρ2 : G→ GL(V1 ⊕ V2) is defined as

(ρ1 ⊕ ρ2)(g) =
[
ρ1(g) 0

0 ρ2(g)

]
,

i.e. as the direct sum of the corresponding matrices. Its action is therefore
given by the independent actions of ρ1 and ρ2 on the orthogonal subspaces V1

and V2 in V1 ⊕ V2.

The direct sum admits an obvious generalization to an arbitrary number of represen-
tations ρi: ⊕

i
ρi(g) = ρ1(g)⊕ ρ2(g)⊕ . . .

The action of a representation might leave a subspace of the representation space
invariant. If this is the case, there exists a change of basis to an equivalent represen-
tation which is decomposed into the direct sum of two independent representations
on the invariant subspace and its orthogonal complement.

Definition 22: Irreducible representations

A representation is called irreducible (or irrep) if it does not contain any
non-trivial invariant subspaces.

For instance, the trivial representation in Example 14 is an irreducible representation
for any group. We will find more examples in Sec. 2.7.2, where we give an overview
of the irreducible representations of all the subgroups of O(2).
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Theorem 2: Decomposition into Irreducible Representations

Any linear representation ρ : G→ V of a compact group G over a field with
characteristic zero is a direct sum of irreducible representations. Each irrep
corresponds to an invariant subspace of the vector space V with respect to
the action of ρ.
In particular, any real linear representation ρ : G→ Rn of a compact group G
can be decomposed as

ρ(g) = Q
[⊕

i∈I
ψi(g)

]
Q−1

where I is an index set specifying the irreducible representations ψi contained
in ρ and Q is a change of basis.

Therefore, in proofs it is often sufficient to consider irreducible representations.
Indeed, we can use this result in Sec. 3.4 to solve the kernel constraint of Steerable
CNNs. In addition, irreducible representations are always indecomposable, i.e. can
not be further decomposed into the direct sum of other representations.

A particularly important representation is the regular representation.

Definition 23: Regular Representation

The regular representation of a finite group G acts on a vector space R|G| by
permuting its axes. Specifically, associating each axis eg of R|G| to an element
g ∈ G, the representation of an element g̃ ∈ G is a permutation matrix which
maps eg to eg̃g.

Example 16: Regular representation of C4

The regular representation of the group C4 with elements {rpπ2 |p = 0, . . . , 3}
is instantiated by:

g r0 rπ
2

rπ r 3π
2

ρC4
reg(g)



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1





0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0





0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0





0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0



where the p-th axis of R4 is associated with the element rpπ2 of C4.
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A vector v =
∑
g vgeg in R|G| can be interpreted as a scalar function

v : G→ R, g 7→ vg

on G. Since
ρ(h) v =

∑
g

vgehg =
∑
g̃

vh−1g̃eg̃ ,

the regular representation corresponds to a left translation [ρ(h) v](g) = vh−1g of
such functions.

A similar representation is the quotient representation.

Definition 24: Quotient Representation

The quotient representation ρG/Hquot of G w.r.t. a subgroup H acts on R|G|/|H|

by permuting its axes. Labeling the axes by the cosets gH in the quotient
space G/H, it can be defined via its action ρG/Hquot (g̃)egH = eg̃gH .

In Appendix D, we give an intuitive explanation of quotient representations in the
context of steerable CNNs.

Regular and trivial representations are two special cases of quotient representations
which are obtained by choosing H = {e} or H = G, respectively. Vectors in the
representation space R|G|/|H| can be viewed as scalar functions on the quotient space
G/H. For instance, a vector v =

∑
gH vgHegH in R|G|/|H| can be interpreted as a

function
v : G/H → R, gH 7→ vgH

on G/H. The action of the quotient representations on v then corresponds to a left
translation of these functions on G/H.

Definition 25: Restricted Representation

Any representation ρ : G→ GL(Rn) can be uniquely restricted to a represen-
tation of a subgroup H of G by restricting its domain of definition:

ResGH(ρ) : H → GL(Rn), h 7→ ρ
∣∣
H

(h)

2.4 Induced Representation

In this chapter, we focus on induction, another method to generate new represen-
tations of a group G, in particular from representations of a subgroup H of G.
Induced representations are of particular relevance for this work as they enable
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us to describe mathematically steerable feature fields in convolutional networks.
This will be treated in details in Sec. 3.2. To keep the presentation accessible, we
first only consider finite groups G and H. We will later extend this concept to more
general groups.

Let ρ : H → GL(Rn) be any representation of a subgroup H < G. The induced

representation IndGH(ρ) is then defined on the representation space Rn
|G|
|H| which can

be seen as one copy of Rn for each of the |G|/|H| cosets gH in the quotient set G/H.
In other words, one can define the space were the induced representation acts as⊕
gH∈G/H Rn ∼= Rn

|G|
|H| and a vector w in this space as:

w =
⊕
gH

wgH ∈ R
n
|G|
|H| , (2.1)

where wgH is some vector in the representation space Rn of ρ.

For the definition of the induced representation it is more convenient to view this
space as the tensor product R|G|/|H|⊗Rn and to write a vector w in this space as

w =
∑
gH

egH ⊗wgH ∈ R
n
|G|
|H| , (2.2)

where egH is a basis vector of R|G|/|H|, associated to the coset gH, while wgH ∈ Rn

is still a vector in the representation space of ρ. The vector egH ⊗wgH ∈ R
n
|G|
|H| can

be interpreted as vec
(
egH w

T
gH

)
. If the basis {egH}gH∈G/H is the standard basis of

R
|G|
|H| (i.e. egH,i = 0 for any entry i except egH,i = 1 when i is the index of the coset

gH), a vector egH ⊗wgH can be interpreted as the vector wgH ∈ Rn padded with
zeros to fill the gH-th n-dimensional block of a n |G||H| -dimensional vector:

egH ⊗wgH =
(

0 · · · 0 wgH 0 · · · 0
)T

︸︷︷︸
gH-th block

The action of IndGH(ρ) on Rn
|G|
|H| can be intuitively understood as

• i) a permutation of the |G|/|H| subspaces (the n-dimensional blocks) associ-
ated to the cosets in G/H and

• ii) an action on each of these subspaces via ρ.

To formalize this intuition, note that any element g ∈ G can be identified by the coset
gH to which it belongs and an element h(g) ∈ H which specifies its position within
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this coset. Hereby h : G → H expresses g relative to an arbitrary representative1

R(gH) ∈ G of gH and is defined as h(g) := R(gH)−1g from which it immediately
follows that g is decomposed relative to R as

g = R(gH)h(g) . (2.3)

The action of an element g̃ ∈ G on a coset gH ∈ G/H is naturally given by g̃gH ∈
G/H. This action defines the aforementioned permutation of the n-dimensional sub-
spaces in Rn|G|/|H| by sending egH in Eq. (2.2) to eg̃gH . Each of the n-dimensional,
translated subspaces g̃gH is in addition transformed by the action of ρ

(
h(g̃R(gH))

)
.

This H-component h(g̃R(gH)) = R(g̃gH)−1g̃R(gH) of the g̃ action within the
cosets accounts for the relative choice of representatives R(g̃gH) and R(gH). Over-
all, the action of IndGH(ρ(g̃)) is given by[

IndGH ρ
]
(g̃)

∑
gH

egH ⊗wgH :=
∑
gH

eg̃gH ⊗ ρ
(
h(g̃R(gH))

)
wgH , (2.4)

which can be visualized as:

IndGH ρ(g̃) ·



...

wgH

...

...

...


=



...

...

...

ρ(h(g̃R(gH)))wgH

...



}
gH

}
g̃gH = g̃R(gH)H

Both quotient representations and regular representations can be viewed as being
induced from trivial representations of a subgroup. Specifically, let ρ{e}triv : {e} →
GL(R) = {(+1)} be the trivial representation of the the trivial subgroup. Then,

IndG{e} ρ
{e}
triv : G→ GL(R|G|)

is the regular representation which permutes the cosets g{e} of G/{e} ∼= G, which are
in one to one relation to the group elements themselves. For ρHtriv : H → GL(R) =
{(+1)} being the trivial representation of an arbitrary subgroup H of G, the induced
representation

IndGH ρHtriv : G→ GL(R|G|/|H|)

1 Formally, a representative for each coset is chosen by a map R : G/H → G such that it projects
back to the same coset, i.e. R(gH)H = gH. This map is therefore a section of the principal bundle
G

π→ G/H with fibers isomorphic to H and the projection given by π(g) := gH.
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permutes the cosets gH of H and thus coincides with the quotient representation
ρ
G/H
quot .

Note that a vector in R|G|/|H|⊗Rn is in one-to-one correspondence to a function
f : G/H → Rn. The induced representation can therefore equivalently be defined as
acting on the space of such functions as2

[IndGH ρ(g̃) · f ](gH) = ρ(h(g̃R(g̃−1gH)))f(g̃−1gH) . (2.5)

This definition generalizes to non-finite groups where the quotient space G/H is not
necessarily finite anymore.

For the special case of semi-direct product groups G = N o H it is possible to
choose representatives of the cosets gH such that the elements h(g̃R(g′H)) = h(g̃)
become independent of the cosets [10]. This simplifies the action of the induced
representation to

[IndGH ρ(g̃) · f ](gH) = ρ(h(g̃)) f(g̃−1gH) (2.6)

All the symmetry groups considered in this work are semi-direct products in the
form G = (R2,+) o H, with H ≤ O(2) and we always consider features defined
over the quotient space G/H = R2. For this reason, we will only need the simplified
formulation in Eq. (2.6) to define Steerable CNNs. This is what we use in Eq. (3.8)
for the group G = E(2) = (R2,+) o O(2), subgroup H = O(2) and quotient
space G/H = E(2)/O(2) = R2. However, the general formulation of induced
representation will be useful to define other representations for the subgroups of
O(2) when designing new models in Sec. 5.1.

2.5 Equivariance and Intertwiners

So far, we have introduced some mathematical concepts which can be used to
describe the symmetries of objects and, in particular, of data and features. More
precisely, these objects can be formalized as elements of aG-space, whose symmetries
are modeled by a group G. In practice, we generally want to build models which
process such objects. It is, therefore, useful to study maps between G-spaces.

2 The rhs. of Eq. (2.4) corresponds to [IndGH ρ(g̃) · f ](g̃gH) = ρ(h(g̃R(gH)))f(gH).
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Definition 26: Equivariance

Given a group G and two G-sets X and Y , a map f : X → Y is said to be
equivariant iff

∀x ∈ X, ∀g ∈ G, f(g.x) = g.f(x) .

Note that the actions of the group G on the two sets do not need to be the same. A
similar concept is that of invariance.

Definition 27: Invariance

An invariant map is a map f : X → Y such that:

∀x ∈ X, ∀g ∈ G, f(g.x) = f(x) .

Note that invariance is only a special case of equivariance where the action of
G on the set Y is trivial, i.e.:

∀y ∈ Y, ∀g ∈ G, g.y = y .

As argued in Sec. 2.3, we are mostly interested in vectors spaces and linear group
actions. The main building blocks in neural networks are learnable linear transfor-
mations which map features between different layers.

Definition 28: Intertwiner

Let G be a group and ρ1 : G → GL(V1) and ρ2 : G → GL(V2) be two
representations, respectively on the vector spaces V1 and V2. A linear map W
from V1 to V2 is an intertwiner between ρ1 and ρ2 if it is an equivariant map,
i.e.:

∀v ∈ V1, ∀g ∈ G, Wρ1(g)v = ρ2(g)Wv

and, therefore, iff:
∀g ∈ G, Wρ1(g) = ρ2(g)W .

For instance, if V1 = Rm and V2 = Rn, W ∈ Rn×m is a n×m real matrix.

The set of all intertwiners between ρ1 : G → GL(V1) and ρ2 : G → GL(V2) is
denoted as

HomG (V1, V2)
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We can immediately observe that this set is itself a vector space. Indeed, if W1,W2 ∈
HomG (V1, V2) are intertwiners between ρ1 and ρ2, for any scalar a3 and any g ∈ G:

(W1 +W2) ρ1(g) = W1ρ1(g) +W2ρ1(g) = ρ2(g)W1 + ρ2(g)W2 = ρ2(g) (W1 +W2)

(aW1) ρ1(g) = aW1ρ1(g) = aρ2(g)W1 = ρ2(g) (aW1)

This means that in order to fully parametrize the space of intertwiners it is sufficient
to find a basis for this space.

In the special case the representations considered are irreducible, the following
important theorem describes the space of existing intertwiners:

Theorem 3: Schur’s Representation Lemma

Let ρ1 : G→ V1 and ρ2 : G→ V2 be irreducible representations of a group G.
Let A : V1 → V2 be a linear map such that ρ2(g)A = Aρ1(g), ∀g ∈ G (i.e. A is
an intertwiner). Then, either:

• A is the null map, or

• A is an isomorphism, i.e. ρ1 and ρ2 are equivalent representations
(Def. 20) and A is the change of basis between ρ1 and ρ2

Moreover, in the complex field, a stronger version of Thm. 3 holds:

Theorem 4: Schur’s Representation Lemma (Complex Field)

Let ρ : G → V be a complex irreducible representation of a group G. Let
A : V → V be a linear map such that ρ(g)A = Aρ(g), ∀g ∈ G. Then, A lives
in a 1-dimensional space and is a scalar multiple of the identity, i.e.:

∃λ ∈ C, s.t. A = λI

Note that, given two arbitrary complex representations ρ1 and ρ2 of G, if one
knows their decomposition in terms of complex irreps ρ1 = A (

⊕
i∈I ψi)A−1 and

ρ2 = B
(⊕

j∈J ψj
)
B−1, the space HomG (ρ1, ρ2) is isomorphic to

HomG (ρ1, ρ2) ∼=
⊕
i∈I

⊕
j∈J

HomG (ψi, ψj)

and, therefore, can be completely parametrized by taking the union of the 1-
dimensional bases spanning each HomG (ψi, ψj) subspace.

3a is a scalar in the field over which the vector spaces are defined.

26 Chapter 2 Mathematical Preliminaries



2.6 Character Theory

A powerful tool often used in Representation theory to study and classify the rep-
resentations of a group is the character. We now introduce some important results
from Character Theory [38] which we will later need in Sec. 3.4.

Definition 29: Character

Let G be a group and V a vector space over a field F . Given a representation
ρ : G→ GL(V ), the character of ρ is a function

χρ : G→ F , g 7→ χρ(g) := Tr(ρ(g))

which maps a group element g to the trace of its representation ρ(g).

Note that the characters of equivalent representations (see Def. 20) are the same.
Indeed, if ∀g ∈ G, ρ1(g) = Dρ2(g)D−1, then ∀g ∈ G

χρ1(g) = Tr(ρ1(g)) = Tr(Dρ2(g)D−1) = Tr(ρ2(g)) = χρ2(g) (2.7)

thanks to the properties of the trace. Moreover, it can be shown that any representa-
tion of a group G is determined up isomorphism by its character 4, i.e. ρ1 and ρ2

are equivalent representations of a group G if and only if χρ1 = χρ2 . Another useful
property is that the character of the direct sum of two representations is equal to the
sum of their characters, i.e. ∀g ∈ G

χρ1⊕ρ2(g) = Tr((ρ1 ⊕ ρ2)(g)) = Tr(ρ1(g)) + Tr(ρ2(g)) = χρ1(g) + χρ2(g) . (2.8)

For simplicity, for the rest of this section we will restrict our consideration to finite
groups. However, all the results can be easily generalized to compact groups by
replacing summations with integrals [20].

We can define an inner product between characters. Given a finite group G and two
characters α, β : G→ C, their inner product is defined as:

〈α, β〉 := 1
|G|

∑
g∈G

α(g)β(g−1) (2.9)

We can now introduce one of the most important theorems in Character theory.
We will first state its most common and elegant version, although it is specific for

4This is only true for representations over field of characteristic 0. This includes the field of real R
and complex C numbers.
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complex representations. We then provide a more general statement which holds for
other fields and, in particular, for the real field, which we are interested in.

Theorem 5: Schur’s Orthogonality Relation (Complex Field)

Let G be a finite group, ψ1, ψ2 two irreducible complex representations of G
and χρ1 , χρ2 : G→ C their characters. Then:

〈χψ1 , χψ2〉 =

1 if φ1 and ψ2 are equivalent representations

0 otherwise

More generally5:

Theorem 6: Schur’s Orthogonality Relation (General Field)

Let G be a finite group, ψ1, ψ2 two irreducible representations of G over a field
F a and χρ1 , χρ2 : G→ F their characters.
Then:

〈χψ1 , χψ2〉 =

d if φ1 and ψ2 are equivalent representations

0 otherwise

where d ∈ N+ b.
aIt is necessary that the characteristic of the field F does not divide the order |G| of G. Both
C and R have characteristic 0 and, therefore, satisfy this condition.

bIn case F is a splitting field for G, e.g. F = C, then d = 1.

This result is extremely useful to describe a general representation in terms of
its irreducible components. This enables us to easily reduce the study of any
representation of a group to the study of its irreducible representations. More
precisely, recalling Thm. 2, given a finite group G and the set of its irreps {ψi : G→
GL(Vi)}i, any representation ρ : G → GL(V ) can be expressed a direct sum of of
irreps, i.e.:

ρ(g) = Q
[⊕

i∈I
ψi(g)

]
Q−1

where I is a set indexing the irreps in {ψi}i, potentially containing multiple copies
of the same irrep. Then, the following result holds:

5 https://groupprops.subwiki.org/wiki/Character_orthogonality_theorem
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Theorem 7: Orthogonal Projection Formula

Given a finite group G and an irreducible complex representation ψ, the
number of copies (multiplicity) m of ψ in a complex representation ρ of G is
equal to the inner product of their characters, i.e. 〈χρ, χψ〉 = m.
In a general field F , it holds:

〈χρ, χψ〉 = m · 〈χψ, χψ〉

Let’s prove this statement. First, defining P (g) =
⊕
i∈I ψi(g), and therefore ρ(g) =

QP (g)Q−1, by using the properties in Eq. (2.7) and Eq. (2.8), we obtain:

χρ(g) = χP (g) =
∑

i∈I
χψi(g) .

We can now use this identity together with Thm. 6 to compute the inner product
between the character of ρ and the character of an irrep ψj:

〈χρ, χψj 〉 = 〈
∑

i∈I
χψi , χψj 〉 using the last identity

=
∑

i∈I
〈χψi , χψj 〉 using the bilinearity of the inner product

=
∑

i∈I
δijdj using Thm. 6

= mjdj

where δij = 0 if i 6= j and 1 otherwise, dj = 〈χψj , χψj 〉 and mj is the number of
occurrences of the index j in the set I, i.e. the multiplicity of ψj in ρ.

This provides us with a useful algorithm to compute the multiplicity of each irrep ψj
in an arbitrary representation ρ of G. Indeed, if G is a finite group, we can numeri-
cally compute the characters χρ and χψj and the inner products dj = 〈χψj , χψj 〉 and
〈χρ, χψj 〉. The multiplicity of mj of ψj in ρ will then be their ratio. This will be used
in Sec. 3.4 to reduce the kernel constraint of Steerable CNNs in simpler constraints
which depend only on irreps.

2.7 Isometries of the Euclidean Plane

In this last section, we briefly introduce some groups of relevance for this work.
As we focus on the two-dimensional setting, we consider the general group of all
isometries of the plane.

The Euclidean group E(2) is the group of all isometries of the plane R2 and consists of
translations, rotations and reflections. In computer vision and image analysis, many
interesting patterns often appear in arbitrary positions and arbitrary orientations.
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order |G| G ≤O(2) (R2,+)oG
orthogonal - O(2) E(2) ∼= (R2,+)o O(2)

special orthogonal - SO(2) SE(2) ∼= (R2,+)o SO(2)
cyclic N CN (R2,+)o CN

reflection 2 ({±1}, ∗) ∼= D1 (R2,+)o ({±1}, ∗)
dihedral 2N DN ∼= CN o({±1}, ∗) (R2,+)o DN

Tab. 2.1.: Overview over the different groups covered in our framework.

For this reason, the Euclidean group models an important factor of variation of
image features. In particular, this applies to symmetric images that do not have a
preferred global orientation, like satellite imagery or biomedical images. However,
even in globally oriented images, the low-level local features present at the small
scale can often occur in multiple positions and orientations, making this group still
relevant to study.

The Euclidean group E(2) can be defined as the semi-direct product (see Def. 18)
E(2) ∼= (R2,+)oO(2) of the group of planar translations (R2,+) and the group of
planar rotations and reflections O(2). Note that the orthogonal group O(2) contains
all operations which leaves the origin invariant (rotations and reflections). In
order to allow for different levels of equivariance and to cover a wide spectrum
of related work we consider subgroups of the Euclidean group of the form G =
(R2,+) oH, defined by subgroups H ≤ O(2). While O(2) includes all reflections
and continuous rotations, its special orthogonal subgroup SO(2) models rotations
only while ({±1}, ∗) describes reflections along a given axis. We further consider
the cyclic groups CN and dihedral groups DN which are discrete subgroups of O(2),
containing N discrete rotations by multiples of 2π

N and N discrete rotations and
reflections, respectively. Therefore, CN and DN have order N and 2N . For an
overview over the groups and their interrelations see Tab. 2.1.

2.7.1 Conventions and Notation

We now shortly introduce some basic conventions we will use throughout this
thesis.

As explained in Def. 18 and done in [10], because the groups G = (R2,+)oH are
semi-direct products, any element g ∈ G can be decomposed as a product g = th

where t ∈ (R2,+) and h ∈ H.

We denote rotations in SO(2) and CN by rθ with θ ∈ [0, 2π) and θ ∈
{
p2π
N

}N−1

p=0
,

respectively. Since O(2) ∼= SO(2)o ({±1}, ∗) is also a semi-direct product of the the
rotations group SO(2) and the reflections group ({±1}, ∗), any element h ∈ O(2)
can be uniquely identified by h = rθs ∈ O(2) where s ∈ ({±1}, ∗) is a reflection
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and rθ ∈ SO(2) a rotation. Similarly, we write h = rθs ∈ DN for the dihedral group
DN ∼= CN o({±1}, ∗), where rθ ∈ CN .

Given a point x ∈ R2, we denote its polar coordinates with (r, φ), where r ∈ R+
0 and

φ ∈ [0, 2π). We will occasionally write x(r, φ) to indicate the point in the plane R2

associated with the polar coordinates (r, φ).

The action of rotations rθ on R2 in polar coordinates x(r, φ) is given by rθ.x(r, φ) =
x(r, rθ.φ) = x(r, φ+ θ). An element h = rθs of O(2) or DN acts on R2 as h.x(r, φ) =
x(r, rθs.φ) = x(r, sφ+ θ) where the symbol s denotes both an element of ({±1}, ∗)
and a number in {±1}.

We will also often use the following matrices. We denote a 2×2 orthonormal matrix
with positive determinant, i.e. rotation matrix for an angle θ, by:

ψ(θ) =
[
cos (θ) 9 sin (θ)
sin (θ) cos (θ)

]

We define the orthonormal matrix with negative determinant corresponding to a
reflection along the horizontal axis as:

ξ(s = 91) =
[
1 0
0 91

]

and a general orthonormal matrix with negative determinant, i.e. reflection with
respect to the axis 2θ, as:[

cos (θ) sin (θ)
sin (θ) 9 cos (θ)

]
=
[
cos (θ) 9 sin (θ)
sin (θ) cos (θ)

] [
1 0
0 −1

]

Hence, we can express any orthonormal matrix in the form:[
cos (θ) 9 sin (θ)
sin (θ) cos (θ)

] [
1 0
0 s

]
= ψ(θ)ξ(s)

for some s ∈ {±1} and θ ∈ [0, 2π), where ξ(s) =
[
1 0
0 s

]
.

2.7.2 Irreducible representations of H ≤ O(2)

In this section, we give a short overview of the real irreducible representations
(irreps) of all subgroups H of O(2). We will use these representations to build
H-steerable CNNs in Sec. 3; in particular, in Sec. 3.6, we will use the representation
theory of these groups to describe a variety of equivariant neural networks.
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Special Orthogonal Group SO(2) SO(2) irreps decompose into one-dimensional
complex irreps of U(1) on the complex field. However, since we implement our
theory with real valued variables, we are not interested in them here. Except for
the trivial representation ψ0, all the other irreps are 2-dimensional rotation matrices
with different frequencies k ∈ N.

– ψ
SO(2)
0 (rθ) = 1

– ψ
SO(2)
k (rθ) =

[
cos (kθ) 9 sin (kθ)
sin (kθ) cos (kθ)

]
= ψ(kθ), k ∈ N+

Orthogonal Group O(2) O(2) has two 1-dimensional "degenerate" irreps: the trivial
representation ψ0,0 and a representation ψ1,0 which assigns ±1 to reflections. The
other representations are rotation matrices precomposed with a reflection.

– ψ
O(2)
0,0 (rθs) = 1

– ψ
O(2)
1,0 (rθs) = s where s ∈ ({±1}, ∗)

– ψ
O(2)
1,k (rθs) =

[
cos (kθ) 9 sin (kθ)
sin (kθ) cos (kθ)

] [
1 0
0 s

]
= ψ(kθ)ξ(s),

k ∈ N+ and s ∈ ({±1}, ∗)

Cyclic Groups CN The irreps of CN are identical to the irreps of SO(2) up to
frequency bN2 c. Due to the discreteness of rotation angles, higher frequencies are
aliased and, therefore, isomorphic to these bN2 c irreps.

– ψCN
0 (rθ) = 1

– ψCN
k (rθ) =

[
cos (kθ) 9 sin (kθ)
sin (kθ) cos (kθ)

]
= ψ(kθ), ∀k ∈ {1, . . . , bN−1

2 c}

If N is even, there is an additional 1-dimensional irrep corresponding to frequency
bN2 c = N

2 :

– ψCN
N/2(rθ) = cos

(
N
2 θ
)
∈ {±1} since θ ∈ {p2π

N }
N−1
p=0

Dihedral Groups DN Similarly, DN consists of irreps of O(2) up to frequency
bN/2c.

– ψDN
0,0 (rθs) = 1
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– ψDN
1,0 (rθs) = s where s ∈ ({±1}, ∗)

– ψDN
1,k (rθs) =

[
cos (kθ) 9 sin (kθ)
sin (kθ) cos (kθ)

] [
1 0
0 s

]
= ψ(kθ)ξ(s),

k ∈ {1, . . . , bN−1
2 c} and s ∈ ({±1}, ∗)

If N is even, there are two 1-dimensional irreps:

– ψDN
0,N/2(rθs) = cos

(
N
2 θ
)
∈ {±1} since θ ∈ {p2π

N }
N−1
p=0

– ψDN
1,N/2(rθs) = s cos

(
N
2 θ
)
∈ {±1} since θ ∈ {p2π

N }
N−1
p=0
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3General E(2) - Equivariant
Steerable CNNs

„ I heard reiteration of the following claim:
Complex theories do not work; simple algorithms
do. I would like to demonstrate that in the area
of science a good old principle is valid: Nothing is
more practical than a good theory.

— Vladimir N Vapnik

Deep convolutional networks process input images by progressively combining
smaller patterns to generate more complex ones in a sequence of feature maps,
exploiting the hierarchical pattern in imagery data. With respect to fully-connected
MLPs, the linear layers in CNNs convolve their inputs with multiple learned filters.
These layers can be interpreted as linear maps constrained with a convolutional
weight sharing. This particular functional structure guarantees that convolutional
networks are translation equivariant: a translation of the input corresponds to a
similar translation of all feature maps. Conversely, translating the input of an MLP
results in unpredictable transformations of the features. Analogously, the features of
conventional CNNs do not transform with a consistent behavior when the input is
subject to more general transformations like rotations or reflections.

In this thesis, we develop a unified description and implementation of neural net-
works equivariant to the isometries of the plane R2, i.e., the Euclidean group E(2).
Our work is based on the framework of steerable CNNs [13, 44, 10, 9, 11] which
defines a general theory covering equivariant CNNs on any homogeneous space and,
in particular, on Euclidean spaces Rd.

3.1 Group Convolution Networks (GCNNs)

Before delving into the steerable CNNs framework, we briefly introduce the more
classical group convolutional neural networks (GCNNs) from [12]. GCNNs directly
generalize conventional CNNs by replacing the operation of convolution, usually
defined over planar images, with that of group-convolution, i.e., a convolution per-
formed over a group. In practice, we will consider cross-correlation instead of
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convolution, as commonly implemented in the most popular deep learning frame-
works. We will also sometimes use group cross-correlation and group convolution
interchangeably as often done in the deep learning literature.

Given an input signal f : R2 → R and a filter k : R2 → R, the classical definition of
cross-correlation is:

[k ? f ] (∆x) :=
∫
x
k(x−∆x)f(x) dx (3.1)

In a real implementation, the domain needs to be discretized and the integral over
the continuous plane is replaced by a sum over the pixels in a grid. Note that the
output produced by this operation is technically not defined over the input space R2

where the signals and the filter are defined but, rather, on the "set of all translations"
{∆x}. Because this set happens to be isomorphic to the input space R2, one can still
interpret the output signal as defined over the same space of the input.

However, this formulation can be easily generalized to a broader class of trans-
formations by just considering a larger set of transformations, instead of just the
translations {∆x}. Here, we will consider sets of transformations which have a
group structure.

Definition 30: Group Cross-Correlation

Given a signal f : B → R and a filter k : B → R defined over an input space
B with an action of a group G, a group cross-correlation is defined as:

[k ?G f ] (g) :=
∫
x∈B

k(g−1x)f(x)dx (3.2)

As the classical cross-correlation is equivariant to translations of the input signal,
one can verify the operation in Eq. (3.2) is equivariant to the action of G on the
input f .

Theorem 8: Equivariance of group cross-correlation

Let G be a group with an action on a space B. Given a function f : B → R,
an action of g ∈ G on f can be defined as:

[g.f ](x) := f(g−1x)

Then, given two functions k : B → R and f : B → R, it holds that:

∀h ∈ G k ?G h.f = h. [k ?G f ] (3.3)
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This can be quickly verified as:

[k ?G h.f ] (g) =
∫
g′∈G

k(g−1g′)f(h−1g′)dg′

=
∫
g′′∈G

k(g−1hg′′)f(g′′)dg′′

=
∫
g′′∈G

k((h−1g)−1g′′)f(g′′)dg′′

= [k ?G f ] (h−1g) = [h. [k ?G f ]] (g)

where we have used the substitution g′′ = h−1g′ (and the left-invariance of the Haar
measure).

Note that the output of a group convolution is not a signal over the input space B
anymore, but rather a function over the group G. Indeed, the intermediate features
of a GCNN usually look different from its input. While an input is defined as a signal
over a space endowed with a G-action, a feature map at layer l is a multi-channel
signal fl : G → Rcl over the group. Because the group G intrinsically has a group
action over its own elements (the group law itself), Eq. (3.2) can also be used to
define the convolution in the intermediate layers of the network. Finally, to achieve
group invariance, a common approach is to aggregate a feature map over the group,
e.g., through averaging or max pooling. Because the first group-convolution layer
maps a signal on a G-space B (e.g., an image) to a signal on G, it is often referred
to as uplifting layer in the literature.

E (2) GCNN In particular, here we are interested in the case where the input
base space is the plane B = R2 and the group G is a subgroup of its isometries,
i.e., G ≤ E(2). Moreover, we will only consider those groups which contain the
planar translations (R2,+) (see example 7), as translation equivariance has proved
extremely useful in most image processing applications. Hence, we assume the group
takes the form of a semi-direct productG = (R2,+)oH (see Def. 18) withH ≤ O(2).
For instance, when H = SO(2), we have the group G = (R2,+)o SO(2) = SE(2) of
planar translations and rotations as seen in example 13. [12] first introduced GCNNs
and considered discrete groups H ≤ D4 ≤ O(2) containing rotations by multiples
of π

2 and reflections. Because these are perfect symmetries of the discretized grid,
group convolution as in Eq. (3.2) can be implemented perfectly. Note that Eq. (3.2)
involves transformed filters like g.k = k(g−1 · ). As a result, the use of rotations by
smaller angles requires some form of interpolations of the filters. [45] implements
GCNNs equivariant to multiples of 2π

N , with N > 4, defining filters in terms of a
steerable basis, enabling the analytical rotation of the filters before they are sampled
on the grid. Instead, [2] builds a similar architecture by learning filters in a single
orientation and, then, rotating them through bilinear interpolation.
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3.1.1 Implementation and steps towards Steerable CNNs

If H is a finite group with |H| ∈ N+ elements, group convolution can be efficiently
implemented exploiting the conv2D function often provided in deep learning frame-
works. Assume a single input and output channel for simplicity, and let f : G→ R
be a feature map. Recall that any element g ∈ G = (R2,+) oH can be uniquely
identified by a pair (tx, h) such that g = txh, where tx ∈ (R2,+) (and, therefore,
x ∈ R2) and h ∈ H (see Def. 18). Then, we can "reshape" f to a 2-arguments map
f(x, h) := f(txh). By defining g = tyh and g′ = txh

′ and noting that

g−1g′ = h−1t−ytxh
′ = th−1(x−y)h

−1h′ ,

Eq. (3.2) becomes:

[k ?G f ] (y, h) =
∑
h′∈H

∫
x∈R2

k(h−1(x− y), h−1h′)f(x, h′)dx (3.4)

Note that, for a fixed h′ and h = e the identity, this equation is equivalent to a
conventional convolution as in Eq. (3.1) with a filter

kh′ := k( · , h′) : R2 → R

over the feature map
fh′ := f( · , h′) : R2 → R .

If h 6= e, the convolution is performed with a filter transformed (e.g. rotated) by h:

h.kh′ := k(h−1 · , h−1h′) : R2 → R .

Then, Eq. (3.4) can be visually represented as:

[k ? f ]e
[k ? f ]h1

[k ? f ]h2
...

[k ? f ]h|H|−1


︸ ︷︷ ︸
k?f :R2→R|H|

=


ke kh1 . . . kh|H|−1

h1.ke h1.kh1 . . . h1.kh|H|−1
...

...
. . .

...
h|H|−1.ke h|H|−1.kh1 . . . h|H|−1.kh|H|−1


︸ ︷︷ ︸

k:R2→R|H|×|H|

?



fe

fh1

fh2
...

fh|H|−1


︸ ︷︷ ︸
f :R2→R|H|

(3.5)

This can be implemented as |H| × |H| conventional convolutions (one for each
entry of k) but using only |H| different filters (ke, . . . , kh|H|−1). In practice, the |H|
input signals fe, fh1 , . . . , fh|H|−1 can be stacked into an |H|-channels single input
f : R2 → R|H|; similarly, all the |H|2 filters (ke, . . . , kh|H|−1 and their transformed
copies) can be combined in a unique kernel k : R2 → R|H|×|H|. Then, group
convolution is implemented as a conventional convolution with input and output
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feature maps having |H| channels. However, in contrast to conventional convolution,
the filter k is not completely free; instead, only the first row is freely learnable while
the other rows contain transformed versions of it (by the action of a different group
element h ∈ H).

At last, let’s study the action of a group element g = tyh ∈ G on f . We first note
that

[g.f ](x, h′) = [(tyh).f ](x, h′) = f((tyh)−1x, h−1h′) = f(h−1(x− y), h−1h′)

In other words, g = tyh first transforms each channel independently fh′ by g as
[g.fh′ ](x) = fh′(g−1x), i.e. it shifts it by y and transforms it by h. Then, g permutes
the channels, moving the channel h−1h′ to h′ or, equivalently, moving h′ to hh′. The
first transformation is the same for all channels fh′ of f . Hence, we can write

[g.f ](x) = πhf(g−1x) (3.6)

where πh is a permutation of the |H| channels of f which sends channel h′ to hh′.
We will find a similar formulation in the next sections when describing steerable
CNNs. Indeed, we will soon see that GCNNs are just a special case of them.

3.2 Feature Fields

In Sec. 3.1.1, we have seen how a GCNN equivariant to G = (R2,+) oH can be
implemented as a conventional CNN with structured filters. In particular, Eq. (3.5)
and (3.6) show that the action of G on a feature map of the CNN endows its channels
with additional structure, associating each of the |H| channels to a different element
h ∈ H. Steerable CNNs further generalize this concept to steerable feature fields.
A feature field f : R2 → Rc associates a c-dimensional feature vector f(x) ∈ Rc

to each point x in the base space B = R2. With respect to conventional CNNs,
steerable feature fields are paired with transformation laws which define how they
are transformed by the action of G. At layer l, the feature field fl : R2 → Rcl

transforms under g = th ∈ G = (R2,+)oH as

[g.fl](x) = ρl(h)fl(g−1x) (3.7)

where ρl : H → GL(Rcl) associates an invertible cl×cl matrix to each element h ∈ H,
specifying how the c channels of each feature vector f(x) are mixed. More precisely,
ρl is a group representation of H, see Sec. 2.3. Recall that a representation ρ needs to
satisfy ρ(hh̃) = ρ(h)ρ(h̃) and models the group law h · h̃ as the matrix multiplication
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scalar field ρ(h) = 1 vector field ρ(h) = h

Fig. 3.1.: Transformation behavior of ρ-fields under a rotation by h. Each element f(x)
is being moved to a new position hx and additionally undergoes a change of
orientation prescribed by ρ(h).

of ρ(h) and ρ(h̃). The reader may have already noticed the similarity between
Eq. (3.6) and Eq. (3.7): the permutation matrices πh in Eq. (3.6) corresponds to a
specific choice of ρl, the regular representation of H (Def. 23). We will often refer to
this kind of field as regular field.

It is worth now discussing two other important examples of feature fields. The first
one is scalar fields s : R2 → R. For instance, scalar fields describe gray-scale images
or temperature and pressure fields. An element g = tyh ∈ G ≤ E(2) acts on a scalar
field by moving each point x′ ∈ R2 to a new position x = gx′ = hx′ + y, i.e.:

[g.s](x) := s
(
g−1x

)
= s

(
h−1(x− y)

)
see Fig. 3.1, left. The second example is that of vector fields v : R2 → R2. Examples
of vector fields are optical flows or the gradient of images. These fields transform
as

[g.v](x) := h · v
(
g−1x

)
= h · v

(
h−1(x− y)

)
.

In contrast to the case of scalar fields, a vector v(x′) is not only moved to a new
position x = gx′ but it also changes orientation through the action of h ∈ H;
see Fig. 3.1, right.

Indeed, when H ≤ O(2), a transformation law enriches the features with a notion
of orientation. This is similar to the concept of capsules from [37]. Indeed, the
entries of a feature vector f(x) can be interpreted as the coefficients which describe
a coordinate-independent geometric feature with respect to a particular reference
frame (i.e., image orientation).
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In general, the transformation law of a feature field f : R2 → Rc is completely
determined by its feature type ρ, where ρ : H 7→ GL(Rc) is a c-dimensional
representation of H. We will refer to a field of type ρ as a ρ-field. Formally, the
transformation law in Eq. 3.7 of a ρ-field f is the induced representation1 IndGH ρ
of G = (R2,+)oH (see Sec. 2.4):

[g.f ](x) :=
([

IndGH ρ
]
(tyh) · f

)
(x) = ρ(h) · f

(
h−1(x− y)

)
. (3.8)

Note that, here, we used the simpler definition of the induced representation for
semi-direct products as in Eq. (2.6). As in the previous examples, an induced
representation transforms a feature field by moving the feature vectors from h−1(x−
y) to a new position x and mixing the channels with ρ(h). It turns out that scalar
fields correspond to the trivial representation ρ(h) = 1 ∀h ∈ H (example 14) which
reflects that scalar values do not change when being moved. Analogously, vector
fields are associated with the standard representation ρ(h) = h, where the elements
of H = SO(2) or H = O(2) are interpreted as 2× 2 matrices as in example 15.

In a specific layer, like the features of conventional CNN contain many channels, the
features of steerable CNNs can be composed of many feature fields fi : R2 → Rci ,
each of its own type ρi : H → GL(Rci). The individual feature fields {fi}i are
stacked in a single feature field f =

⊕
i fi which, then, transforms under the direct

sum ρ =
⊕
i ρi of the individual representations (see Def. 21). Note that the block-

diagonal structure of the direct sum ensures that individual feature fields transform
independently from each other. As a simple example, consider an RGB image
f: R2→R3. Because colors do not change and do not mix when the image is rotated,
they can be interpreted as three independent scalar fields. The stacked field then is
of type

⊕3
i=1 1 = id3×3, i.e. the direct sum of three trivial representations.

In a real application, the input and output types of the model are intrinsically
determined by the task. However, like the number of channels in the hidden
layers of a conventional network is a design choice, one still needs to choose the
types ρi of each intermediate feature field as hyper-parameters. In Sec. 3.6, we
elaborate further on different possible representations while in Sec. 5.1 we perform
an extensive experimental comparison of them.

3.3 Steerable Convolution

In Sec. 3.2, we defined a way to describe the transformation laws of steerable
features. Now, we want to ensure that a transformation of the features in a layer

1 Induced representations are the most general transformation laws compatible with convolutions
[10, 9].
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results in a similar transformation in the features of the following layers. While
the transformation law of the input (e.g., the input image) is given by the task
and, therefore, guaranteed to describe the input features, a general layer or neural
network does not ensure its output transforms as desired. We have already seen in
Thm. 8 that group convolution is equivariant and, therefore, guarantees that the
action of the group G on the input commutes with the convolution layers of the
network. When we wrote group convolution in terms of a conventional convolution
in Eq. (3.5), we observed that it corresponds to a convolution with structured filters.
While the structure in Eq. (3.5) is specific for input and output regular fields, in this
section we will generalize this result for any pair of field types.

To ensure steerable feature spaces transform as defined by their field types, each
layer of a steerable CNN needs to commute with the group’s action, i.e., it needs to
be group equivariant. As proven for Euclidean groups in [44]:

Theorem 9: Kernel Constraint: H-Steerability

The most general equivariant linear map between steerable feature spaces of
type ρin and ρout

a, is given by convolutions with H-steerable kernels

k : R2 → Rcout×cin

satisfying a kernel constraint

k(hx) = ρout(h)k(x)ρin(h−1) ∀h ∈ H, x ∈ R2 (3.9)

ai.e. transforming under IndGH ρin and IndGH ρout

A more general statement, valid for arbitrary homogeneous spaces, has been derived
in [10, 9].

Note 1: Discretized Kernel

Note that k : R2 → Rcout×cin associates a matrix of shape (cout, cin) to each
point x ∈ R2 in the plane. The kernel k can then discretized on a X × Y grid,
generating the tensor of shape (cout, cin, X, Y ) commonly used in most deep
learning frameworks.

In other words, the condition in Thm. 9 relates the kernel evaluated on transformed
coordinates hx to the kernel on non-transformed coordinates x and, therefore, the
responses associated to transformed inputs. We can prove that a convolution kernel
of this form guarantees that its output transforms according to IndGH ρout when its
input is transformed by IndGH ρin. Here, we will only show that the H-steerability
(Thm. (9)) of convolution kernels is sufficient for equivariance. A complete proof
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that shows H-steerability is not only sufficient but also necessary can be found in
[44].

Assume two feature fields fin : R2 → Rcin of type ρin and fout : R2 → Rcout of type
ρout to be given. The group G = (R2,+)oH ≤ E(2) acts on them as in Eq. (3.8):

[g.fin] :=
([

IndGH ρin

]
(tyh) fin

)
(x) = ρin(h) fin

(
h−1(x− y)

)
[g.fout] :=

([
IndGH ρout

]
(tyh) fout

)
(x) = ρout(h)fout

(
h−1(x− y)

)
.

The convolution (actually, correlation) of a feature field with an H-steerable kernel
k : R2 → Rcout×cin is defined like the conventional one in Eq. (3.1):

fout(x1) := [k ? fin] (x1) =
∫
R2
k(x0 − x1)fin(x0) dx0 .

The response of convolution when the input fin is transformed by g = tyh ∈ G is:

[k ? g.fin] (x1) =
∫
R2
k(x0 − x1)[(tyh).fin](x0) dx0

=
∫
R2
k(x0 − x1)ρin(h) fin(h−1(x0 − y)) dx0

(1)=
∫
R2
ρout(h)k(h−1(x0 − x1))ρin(h−1)ρin(h) fin(h−1(x0 − y)) dx0

= ρout(h)
∫
R2
k(h−1(x0 − y)− h−1(x1 − y))fin(h−1(x0 − y)) dx0

(2)= ρout(h)
∫
R2
k(x̃0 − h−1(x1 − y))fin(x̃0) dx̃0

= ρout(h)fout(h−1(x1 − y))

= [g.fout] (x1) ,

i.e. it satisfies the equivariance condition:

k ? g.fin = g. [k ? fin] .

During the derivation, in (1) we used the steerability of k (Thm. 9) to apply
the identity k(x) = ρout(h)k(h−1x)ρin(h−1). In (2), we used the substitution
x̃0 = g−1x0 = h−1x0 − y. Note that

∣∣∣det
(
∂x0
∂x̃0

)∣∣∣ = |det(g)| = 1 for an orthogo-
nal transformation g ∈ G and, therefore, the integral measure does not change.

Finally, note that the space of all (unconstrained) kernels (as considered in a con-
ventional CNN) is a vector space. Because the equivariance condition in Thm. 9 is a
linear constraint on this vector space, the set of kernels fulfilling this constraint is
a vector space itself and, in particular, it is a subspace of the unconstrained vector
space. As a result, any equivariant kernels can be expanded in terms of a basis for
the H-steerable kernel space. Thus, to parametrize equivariant kernels, we build
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one such basis and combine its elements with a set of learnable weights. The lower
dimensionality of the equivariant kernel space enforces a stronger form of weight
sharing and, therefore, improves the parameter efficiency of the models, as done by
translational weight sharing in conventional CNNs with respect to MLPs.

3.4 Irreps Decomposition

The constraint from Thm. 9 depends on the pair of input and output types ρin and
ρout. Because different pairs of types have different solutions, in principle, one needs
to solve an independent constraint for each pair of input/output types appearing in
the network.

The authors of [44] proposed a numerical method to compute these solutions for
arbitrary pairs of irreducible representations (irreps) (Def. 22) which is based on the
Clebsch-Gordan decomposition of their tensor products. While this method can be
applied to arbitrary pairs of representations, it becomes prohibitively expensive for
large representations, including some of those considered here. A more detailed
comparison with this method can be found in Appendix C.

In this work, to efficiently compute a basis for arbitrary representations ρin and
ρout, we decompose the constraint into a set of much simpler constraints defined
in terms of the irreps contained in ρin and ρout. This approach relies the property
described in Thm. 2, i.e., any representation ρ : H → Rc of a compact group H can
be decomposed into a direct sum of irreps (up to a change of basis):

ρ = Q−1
[⊕
i∈I

ψi

]
Q

where Q is the change of basis matrix, {ψi}i are the irreps of H and I is an index set
encoding the types and multiplicities of irreps in ρ. If the set of irreps {ψi}i is known,
a representation ρ can be decomposed by exploiting some results from character
theory and linear algebra. We presented an introduction to character theory in
Sec. 2.6 and described a method to decompose the representations of finite groups
in Thm. 6. We discuss the implementation of group representations in Sec. 4.3.

By decomposing ρin and ρout as above in Eq. (3.9), we obtain

∀h ∈ H, x ∈ R2,

k(hx) = Q−1
out

[⊕
i∈Iout

ψi(h)
]
Qout k(x) Q−1

in

[⊕
j∈Iin

ψ−1
j (h)

]
Qin (3.10)
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which, with a change of variable κ := Qout k Q
−1
in , becomes

∀h ∈ H, x ∈ R2

κ(hx) =
[⊕

i∈Iout
ψi(h)

]
κ(x)

[⊕
j∈Iin

ψ−1
j (h)

]
(3.11)

The new kernel κ is the kernel k expressed relative to the irrep bases. This last
expression can be visually represented as:


κi1j1(gx) κi1j2(gx) . . .

κi2j1(gx) κi2j2(gx) . . .

...
...

. . .


︸ ︷︷ ︸

κ(gx)

=


ψi1(g)

ψi2(g)

. . .


︸ ︷︷ ︸⊕

i∈Iout
ψi(g)

·


κi1j1(x) κi1j2(x) . . .

κi2j1(x) κi2j2(x) . . .

...
...

. . .


︸ ︷︷ ︸

κ(x)

·


ψ91
j1(g)

ψ91
j2(g)

. . .


︸ ︷︷ ︸⊕

j∈Iin
ψ91
j (g)

The block-diagonal structure of the direct-sum representations in the right hand side
implies that the constraint decomposes into a number of independent constraints

κij(hx) = ψi(h) κij(x) ψ−1
j (h) ∀g ∈ G, x ∈ R2 (3.12)

on blocks κij in κ, one for each pair i ∈ Iout and j ∈ Iin. Each constraint corresponds
to an invariant subspace of the full kernels space.

We can build a basis K for the space of all kernels equivariant with respect to
ρin and ρout, i.e., satisfying the full constraint in Eq. (3.9), as follows. First, we
compute a basis Kij =

{
bij1 , · · · , b

ij
dij

}
for the space of H-steerable kernels satisfying

the independent constraint (3.12) on κij for each pair of irreps (ψi, ψj). We can take
the union of all these bases, by zero-padding them appropriately, to obtain a basis
for the full kernel κ, expressed in the irreps basis. A basis element bijl is zero-padded
to fill the block corresponding to κij (i-column, j-th row) in a matrix of the same
shape of κ:

b
ij
l :=



. . .
...

...
...

...

. . . 0 0 0 . . .

. . . 0 bijl 0 . . .

. . . 0 0 0 . . .

...
...

...
...

. . .


.
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In other words, given the set of bases {Kij}i,j for the individual blocks {κij}i,j of κ,
we build the following d =

∑
ij dij-dimensional basis

K̄ =
{
κ̄1, · · · , κ̄d

}
:=

⋃
i∈Iout

⋃
j∈Iin

{
b
ij
1 , · · · , b

ij
dij

}
(3.13)

for the space of kernels satisfying Eq. (3.11).

Finally, we can apply the changes of basis Qin and Q−1
out to the elements of K̄ to

obtain a basis for the original kernel k fulfilling Eq. (3.9):

K =
{
κ1, · · · , κd

}
:=
{
Q−1

out κ̄Qin
∣∣κ̄ ∈ K̄} (3.14)

=
⋃

i∈Iout

⋃
j∈Iin

{
Q−1

out b
ij
1 Qin, · · · , Q−1

out b
ij
dijQin

}

If the basis Kij of each block ij is complete, the completeness of the full basis K
follows by construction. Finally, we point out that this approach can be used to
solve the kernel constraints of any steerable CNNs and it is not limited to E(2) or its
subgroups.

3.5 Kernel Constraint Solution for H ≤ O(2)

Although the method proposed in the previous section can be used to solve the
kernel constraint for any group, in this work, we are interested in the specific case of
planar isometries, particularly G = (R2,+) oH ≤ E(2) with H subgroup of O(2).
Because H is a subgroup of O(2), its action on R2 is norm-preserving, i.e.

||h.x||2 = ||x||2 ∀h ∈ H, x ∈ R2 .

It follows that both the general constraint in Thm. 9 and the irreps constraint in
Eq. (3.12) do not restrict the radial component of the kernels but only affect their
angular parts. To deal with these two components independently, it is convenient to
express the kernel in polar coordinates using the map x : (r, φ) 7→ r · (cosφ, sinφ)T

with r ∈ R+
0 and φ ∈ [0, 2π). Moreover, the irreducible representations of H are

always associated to a unique angular frequency (see Sec. 2.7.2). This suggests
expressing the kernel in terms of an (angular) Fourier series

kijαβ
(
x(r, φ)

)
= Aαβ,0(r) +

∑∞
µ=1

[
Aαβ,µ(r) cos(µφ) + Bαβ,µ(r) sin(µφ)

]
(3.15)

with real-valued, radially dependent coefficients Aαβ,µ : R+
0 → R and Bαβ,µ : R+ →

R for each entry kijαβ of each block kij .
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We can then replace the kernel with the expansion above in the irreps constraints in
Eq. (3.12). By projecting the resulting expression on each element of the harmonic
basis, the kernel constraint translates into a constraint on the expansion coefficients.
Its solution requires many of the coefficients to be zero and, therefore, defines a
subset of the initial harmonic basis. The block kij is then parameterized in terms of
this subset using the non-zero coefficients. The completeness of the initial harmonic
basis directly implies the basis built this way is complete. Similar strategies were
used for the specific case of CN in [45], of SO(2) in [48] and of SO(3) in [44].

In Table 3.1, we report the angular bases for each pair of irreducible representations
of O(2). Note that each element of the basis is associated with a unique angular
frequency. Using the method just described, we explicitly derive the bases for spaces
of equivariant kernels for all subgroups H ∈ O(2) and all pairs of their irreps in
Appendix B. The final solutions for SO(2), ({±1}, ∗), CN and DN are found in Tables
B.1, B.3, B.4 and B.5. Note that the bases associated with these subgroups H < O(2)
are larger than that associated with O(2) and, therefore, parametrize a larger space
of filters. Indeed, smaller subgroups enforce weaker constraints on the kernels.
Thus, an higher level of equivariance results in both a guaranteed behavior under
transformations of the input during inference and an improved parameter efficiency
of the model during training.

ψi
ψj trivial sign-flip frequency n ∈ N+

trivial
[
1
]

∅
[
sin(nφ), 9 cos(nφ)

]
sign-flip ∅

[
1
] [

cos(nφ), sin(nφ)
]

frequency
m ∈ N+

[
sin(mφ)

9cos(mφ)

] [
cos(mφ)
sin(mφ)

] [
cos
(
(m9n)φ

)
9sin

(
(m9n)φ

)
sin
(
(m9n)φ

)
cos
(
(m9n)φ

)
]
,

[
cos
(
(m+n)φ

)
sin
(
(m+n)φ

)
sin
(
(m+n)φ

)
9cos

(
(m+n)φ

)
]

Tab. 3.1.: Bases for the angular parts of O(2)-steerable kernels satisfying the irrep constraint
Eq. (3.12) for different pairs of input field irreps ψj and output field irreps ψi.The
different types of irreps are explained in Sec. 2.7.2.

3.6 Representations and Non-Linearities

Although a general theory of steerable CNNs exists, it does not prefer any field type
when implementing them. Which choice of representation ρ of H is more suitable
when designing equivariant networks is still not clear. In this section, we explore
different such choices.

Equivariant Linear Networks We first consider a simplified setting. Assume a linear
model consisting only of convolutions withH-steerable kernels. In this case, applying
any change of basis to the field types of an intermediate layer l will leave the
model unchanged. Recall that a change of basis P transforms a representation
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ρl to an equivalent representation ρ̃l := P−1ρlP . Assume an irrep decomposition
ρl = Q−1

l

[⊕
i∈Il ψi

]
Ql of ρl as used in Sec. 3.4 to solve the kernel constraint. Then,

the equivalent representation ρ̂l will decompose as ρ̃l = Q̃−1
l

[⊕
i∈Il ψi

]
Q̃l, where

Q̃l = QlP . However, because the steerable basis derived in the irreps space in
Eq. (3.13) does not depend on the change of basis Ql, it is also not affected by the
new change of basis P . Thus, it is sufficient to define field types only in terms of
direct sums of irreps ρl =

⊕
i∈Il ψi. In this setting, this simplifies the problem of

choosing representations to that of choosing the multiplicities of each irrep.

However, usually neural networks alternate convolution layers with other layers,
like non-linearities, which might be sensitive to the representations used. Indeed,
a non-linearity needs to be equivariant with respect to the specific representation
associated with its input. For this reason, the set of suitable non-linearities is limited
by the choice of field types of the features. At the same time, a non-linearity is
equivariant only to a restricted range of representations. It is, therefore, natural to
study representations together with their compatible non-linearities. In the rest of
this section, we will review different such combinations from the current literature.

We only consider spatially-localized non-linearities σ, i.e. which transforms a feature
field f : R2 → Rcin by acting on each feature vector f(x) ∈ Rcin independently:

[σ(f)](x) = σ(f(x)) ∀x ∈ R2

In general, the input and output types ρin and ρout of σ : Rcin → Rcout do not need
to be the same. If the non-linearity σ is equivariant to H acting on a single feature
vector f(x) through ρin and ρout, i.e.

σ(ρin(h)f(x)) = ρout(h)σ(f(x)) ∀h ∈ H

then it is also equivariant to the full group G (acting through its induced representa-
tion) when applied on the entire feature field f . See Appendix A for a proof.

Unitary representations A general class of representations are unitary representa-
tions, i.e. representations which associates unitary matrices to the group elements
and, so, whose action on a vector preserves its norm:

||ρ(h)f(x)||2 = ||f(x)||2 ∀ h ∈ H .
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As shown in Appendix A.1, Any non-linearity which only acts on the norm of a
feature vector but preserve its orientation is equivariant with respect to any unitary
representations of H. Such non-linearities can be written as

σ : f(x) 7→ η(||f(x)||2) f(x)
||f(x)||2

where η : R≥0 → R≥0 is a non-linearity such that η(0) = 0. In [48, 44], Norm-ReLUs
was used as non-linearity and can be defined using η(||f(x)||2) = ReLU(||f(x)||2−b),
with learnable bias b ∈ R+. The authors of [37] used squashing non-linearities
η(||f(x)||2) = ||f(x)||22

||f(x)||22+1 . A conditional version of norm non-linearities was used
in [44]: Gated non-linearities scale the norm of a feature vector f(x) by a learned
sigmoid gate 1

1+e−s(x) , parameterized by a scalar feature field s : R2 → R. Here,
η(||f(x)||2) = ||f(x)||2 1

1+e−s(x) . Because all representations we consider are unitary,
we can always use norm non-linearities. In particular, any irreducible representations
ψi of the groups considered here are unitary2. We discuss all irreps and their
properties in more detail in Sec. 2.7.2.

Regular representation A popular choice when working with finite groups H (e.g.
CN or DN) is the regular representation ρHreg, introduced in Def. 23. This representa-
tion has size equal to the order |H| of the group, e.g., N for CN and 2N for DN , and
acts by permuting the |H| channels of a ρHreg-field. As a result, it is always possible to
use point-wise non-linearities like ReLU; see Appendix A.2 for a proof. As mentioned
in Sec. 3.1 and 3.2, regular steerable CNNs are equivalent to group-convolution ar-
chitectures. Although this design generally shows very good performance, it requires
high dimensional feature fields as each individual field needs |H| channels. This
kind of design was used for planar images in [12, 45, 22, 2, 18, 40, 33, 17], for
spherical data in [8, 11] and for volumetric convolutions in [46, 47]. Additionally, a
translation of the convolutional feature maps in vanilla CNNs can be interpreted as
the action of the regular representation of the discrete translation group (Z2,+).

Quotient representation A similar representation which acts through permutation
matrices is the quotient representation; see Def. 24. It follows that, like regular
representation, a quotient representation supports point-wise non-linearities. Instead
of permuting |H| channels indexed by elements of H, it permutes |H|/|K| channels
indexed by cosets hK in the quotient space H/K (Def. 13), for a subgroup K ≤ H.
Note that the regular representation ρHreg is a special case for K = e, i.e. the
trivial group. Then, a quotient representation ρ

H/K
quot only uses |H|/|K| channels,

|K| times less that the regular one. This comes with the cost of having more
symmetric filters, parametrized by a smaller H-steerable kernel basis. In practice,
instead of containing |H| transformed versions of an unconstrained filter, they use

2This is in general true for any compact group.
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only |H|/|K| transformed versions of a filter, which is K-invariant. We include an
extended discussion about the symmetries enforced by quotient representations,
together with some practical examples, in Appendix D. Quotient representations
were previously considered in [13, 27].

Induced representation Regular and quotient representations are further gen-
eralized by induced representations, introduced in Sec. 2.4. In particular, they
are built through induction from the trivial representation of the trivial group,
ρHreg = IndH{e} 1, or of a subgroup K ≤ H, ρHquot = IndHK 1, respectively. Induction
generalizes quotient representations by allowing one to build new representations
ρind = IndHK ρ̃ : H → GL(Rc·|H:K|) from any representation ρ̃ : K → GL(Rc) of the
subgroup K; |H : K| denotes the index of K in H (see Def. 12) which is equal
to |H|/|K| if H and K are finite groups. It is important to note that the induc-
tion from K to H, although conceptually equivalent to the induction from H to
G = (R2,+)oH used to define steerable CNNs in Eq. (3.8), is used here to construct
a representation acts on the channels of a single feature vector rather than on the
full feature field. Finally, non-linearities equivariant to an induced representation
can be built from non-linearities supported by ρ̃.

Group Pooling and Vector Field non-linearities When using regular or quotient
fields, one use the group pooling operation max : Rc → R, f(x) → max(f(x)) to
extract the maximum value of the input field. This kind of operation was previously
used in [12, 45, 2, 47, 46]. Note that the representation ρ defining the input field
transforms the c input channels via permutation matrices. Since the max operation
is invariant to permutations, its output is invariant to the transformation of the
channels through ρ. This implies that the output field is a scalar field. Unfortunately,
this operation discards all information about the orientation of the features. In order
to preserve this information while still reducing the size of the features, the authors
of [30] suggested vector field non-linearities when using the regular representation
of a discrete rotation group CN . In particular, this non-linearity computes both the
maximum response max(f(x)) and its index arg max(f(x)) ∈ {0, . . . , N − 1}. Note
that this index corresponds to a rotation angle θf(x) = 2π

N arg max(f(x)). Then, the
vector field non-linearity σvect : RN → R2 maps the input feature vector f(x) to
a two dimensional vector v(x) = max(f(x))(cos(θf(x)), sin(θf(x)))T . We prove the
equivariance of this non-linearity in A.3.

Tensor Product Any pair of feature fields f1 : R2 → Rc1 and f2 : R2 → Rc2

can be combined via the tensor product f1 ⊗ f2 : R2 → Rc1c2 . If the input fields
transform respectively as ρ1 and ρ2, their product transforms under the tensor product
representation ρ1 ⊗ ρ2 : H → GL(Rc1·c2). The tensor product is already a non-linear
operation, hence it is not usually combined with other non-linearities and can be
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used to build equivariant networks with arbitrary representations. This operation
has been discussed in [25, 44, 26, 1].

Direct Sum One can also always combine two or more feature fields {fi : R2 →
Rc1}i by concatenating their channels, i.e. taking the direct sum

⊕
i fi : R2 → Rc,

with c =
∑
i ci. We also used this operation in Sec. 3.2 to construct feature spaces

made of different feature fields. The resulting field transforms according to the
direct sum representation ρ =

⊕
i ρi, as defined in Def. 21. Note that the input fields

{fi}i will still transform independently and each field fi can still be interpreted
independently. Thus, it is possible to apply different non-linearities σi to each field
fi and, if σi is equivariant with respect to ρi, the whole layer is equivariant with
respect to ρ; see Appendix A for a proof.

Finally, because the theory of steerable CNNs does not favor any of these designs,
we perform an extensive experimental study to compare them in Sec. 5.1.

3.7 Group Restriction

The rationale for the development of equivariant networks, and the reason for
their success, is exploiting the symmetries in the data. However, many interesting
tasks are characterized only by few symmetries, if any, in their patterns, limiting
the possible applications of such models. Moreover, the amount of symmetries
can change when observing the signals contained in the data at different scales.

Fig. 3.2.: Example of natural image
showing local rotational sym-
metry but a global vertical ori-
entation. Credit: MikeLynch, CC BY-SA 3.

In particular, this is common in natural im-
ages. While small patterns (from smaller de-
tails to edges or intensity gradients) usually
appear in arbitrary orientations and reflec-
tions, these symmetries tend to disappear on
larger length scales. For instance, pictures
are usually aligned in a vertical direction,
with large patterns appearing only in one
orientation. As a practical example, consider
a dataset of faces or natural landscapes. In
both cases, images have a strong notion of
vertical alignment (e.g., the eyes are always

above the nose and the mouth). Nevertheless, by looking only at small areas of
the images, one finds patterns repeating in arbitrary orientations. Note also that,
often, these images are still symmetric to reflections along the vertical axis. See, for
example, Fig. 3.2: while the sunflowers are rotationally symmetric, the image has a
vertical alignment, with the sky always shown above the ground. This hierarchical
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structure has already been observed in the features of conventional CNNs [50].
Because of the local field of view of their convolution layers (due to the limited size
of their filters), the first layers learn to detect small edges and corners. In contrast,
deeper layers learn gradually more complex and larger patterns, which tend to
appear in fewer orientations. This suggests a neural network design where each
layer is adapted to the symmetries which are manifested in the length scale of its
field of view.

The loss of symmetries in the hierarchy of feature maps can be modeled by relax-
ing the equivariance constraint on the kernels at different depths of the network.
Mathematically, this can be done through the restriction of the equivariance group
G = (R2,+)oH to a subgroup G′ = (R2,+)oK ≤ G, where K ≤ H. For instance,
when working with the data in the previous examples, one could use a network
which is H = O(2) rotation and reflection equivariant in the first layers but only
K = ({±1}, ∗) reflection equivariant in the following ones.

If restriction from H to K is performed after the l-th layer, it is necessary to reinter-
pret the features produced by the l-th layer, transforming according to H, such that
they are compatible with the l + 1-th layer, transforming according to K. More pre-
cisely, if the l-th layer produces a ρ-field, with ρ : H → GL(Rc), in order to guarantee
equivariance to K of the following layer, the field then needs to be reinterpreted as
a ρ̃-field, with ρ̃ : K → GL(Rc) a representation of K compatible with ρ, i.e.:

∀k ∈ K ≤ Hρ(k) = ρ̃(k) .

Note that ρ̃ can be constructed just by restricting the domain of ρ to K. Such
representation is called the the restricted representation of ρ (Def. 25):

ρ̃ := ResHK(ρ) : K → GL(Rc), k 7→ ρ(k) . (3.16)

Because the method in Sec. 3.3 allows us to build steerable convolution layers for
arbitrary representations of K, we can always immediately work with ResHK ρ-fields.
We give more details about the implementation of group restriction in Sec. 4.3.1.

One can also imagine the opposite setting, where the data does not show any real
symmetry on the small scale. However, a global symmetry emerges when discarding
small details and looking at the patterns at a larger scale. An equivariant model
able to exploit this could be designed by lifting a ρ-field, equivariant to a subgroup
K ≤ H describing the local symmetry, to an induced IndHK ρ-field, equivariant to the
global symmetry H.
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In Sec. 5.2, 5.4, 5.5 and 5.6 we examine the effectiveness of enforcing local equiv-
ariance via the use of group restrictions on datasets with different levels of global
symmetries.
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4Implementation: E2CNN Library

„Beware of bugs in the above code; I have only
proved it correct, not tried it.

— Donald E. Knuth

4.1 Convolution Layer

As derived in Sec. 3.3, E(2)-steerable CNNs require convolution layers to use O(2)-
steerable filters. Then, a real implementation of the convolution layer needs to
include the following three steps:

1. derivation of a basis for the steerable kernels,

2. its contraction using the learned expansion coefficients to build the kernel, and

3. execution of the convolution with the kernel just built.

Because the steerable basis only depends on the input and output representations,
which are defined during the design of the model, and does not change throughout
the training, it can always be precomputed, avoiding unnecessary overhead during
training.

Therefore, the construction of a convolution layer resembles the following process.
First, the user chooses the input and output representations ρin and ρout of H ≤
O(2), defining the input and output field types. We can immediately generate a
basis K = {κ1, . . . κd} as in Sec. 3.4 for the space of equivariant kernels satisfying
Thm. 9.

However, the method described in Sec. 3.4 requires the decomposition of ρin and ρout

into direct sums of irreps to be available. We can find the types and multiplicities of
the irreps appearing in the decomposition of both representations using character
theory, see Sec. 2.6 and Sec. 4.3. In general, the change of basis matrices can be
computed numerically by solving the linear system ρ(h) = Q−1[

⊕
i∈I ψi(h)]Q ∀h ∈

H. Because most of the representations we use are regular, quotient or induced
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representations, a more efficient method can be used in practice. We describe in
more detail the methods used to decompose representations in Sec. 4.3.

Knowing the decompositions of both ρin and ρout, for each pair of input/output
irreps ψi and ψj we can retrieve the basis Kij =

{
bij1 , · · · , b

ij
dij

}
analytically derived

in Appendix B and reported in Appendix B.1. Combining these solutions with the
change of basis matrices Qin and Qout found during the irreps decomposition, we
construct the full basis K =

{
κ1, · · · , κd

}
as in Eq. 3.14.

As discussed in Sec. 3.5, becauseH ≤ O(2), the kernel constraint does not restrict the
radial component of the filters. Indeed, the analytical bases derived in Appendix B are
defined only over the angular component of the filters and so will be the constructed
basis K. Hence, we still need to select a basis for the radial part of the filters. A
common choice [48, 45, 44] is using Gaussian radial profiles

ηR(r) = exp
( 1

2σ2 (r 9R)2
)

(4.1)

of width σ, centered at radii R = 1, . . . , bs/2c.

4.1.1 Discretization and Anti-Aliasing

In practice, to perform numerical computations, we need to discretize continuous
signals in the inputs and the features. As commonly done in computer vision, planar
signals are sampled on a pixel grid Z2. It is important to draw attention to the fact
that this discretization reduces the continuous symmetries of the plane R2 to only
the discrete symmetries of the grid Z2, which include only subgroups of D4. Indeed,
these were the first groups employed in the literature [12, 18, 13]. Thus, one can
only properly enforce equivariance only to these subgroups, whereas equivariance
to larger groups can only be approximate. We discretize the convolution filters by
sampling all elements of the analytical kernel basis {κ1, . . . , κd} on a s×s grid and
store them in a (d, cout, cin, s, s)-dimensional array. Because the sampling and the
linear combination of the basis commute [45], contracting the sampled basis with
learned weights is equivalent to contracting the continuous (analytical) basis and,
then, sampling the resulting filter on the grid.

Unfortunately, aliasing can occur when sampling continuous signals. Briefly, aliasing
is observed when different signals become indistinguishable after being sampled on a
discrete set of points. It is essential to prevent this kind of effect when implementing
steerable convolution to ensure approximate equivariance. Recall that the kernel
bases for steerable filters are constituted by a subset of the angular harmonics as in
Table 3.1. In particular, each element of the basis is associated with a single angular
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frequency and the frequencies present in the basis depend on the specific input
and output irreps. However, if the sampling rate of the basis is not high enough, a
high-frequency basis element might be identical to a lower-frequency filter, which
does not belong to the analytical basis. This can result in non-equivariant elements
in the discrete kernel basis.

To avoid aliasing and guarantee approximate equivariance of the kernels, we band-
limit the kernel bases. As each element of our bases is associated with only one
angular frequency, anti-aliasing only requires discarding elements with a frequency
higher than a chosen cutoff frequency. In Eq. (4.1), we parametrized the radial
component of the filters with different Gaussian radial profiles. This basis splits a
steerable filter in multiple rings with different radii, one for each element of the
radial basis. We observe that larger rings correspond to higher sampling rates of the
angular basis. This suggests to band-limit the angular bases at different radii using
different cutoff frequencies.

We experiment with different band-limiting policies. Although larger rings always
feature higher sampling rates, the largest rings can lose part of their support as
they partially fall outside the grid. We empirically observe that the high-frequency
elements sampled in the outermost ring often introduce high equivariance errors.
For this reason, we have found beneficial to both reduce the width (σ in Eq. (4.1))
and use a lower cutoff frequency in the largest rings.

4.1.2 Block-wise basis expansion

As the features of conventional CNNs contain multiple channels, the features of steer-
able CNNs are commonly built as a stack of multiple feature fields, see Sec. 3.2. The
direct sum of feature types induces a block-diagonal structure in the representation
acting on the features. This allows us to decompose the kernel constraint in Thm. 9
into simpler constraints, enabling a more efficient implementation.

Consider a convolution layer with input type ρin and output type ρout. Assume that
the features comprise multiple individual feature fields and, therefore, the input
and output representations are direct sum representations of the form ρin =

⊕
δ ρin,δ

and ρout =
⊕
γ ρout,γ . Then, the constraint in Thm. 9 on the full kernel k, mapping

between ρin and ρout, corresponds to independent constraints on each block kγδ of k,
which maps between individual fields of type ρin,δ and ρout,γ . Thus, we can build a
basis for k by computing a basis

{
kγδ1 , . . . , kγδ

dγδ

}
for each different pair

(
ρin,δ, ρout,γ

)
of input and output types.
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This decomposition should not be confused with the one used in Sec. 3.4. Although
they share the same idea, in Sec. 3.4 we decompose the constraint associated to a
single pair of individual input and output fields of types ρin,δ and ρout,γ into simpler
constraints associated to their irreps. Here, instead, we decompose the constraint
associated to the full feature fields of type ρin and ρout into constraints associated to
each pair of individual input and output fields ρin,δ and ρout,γ , i.e. the constraints
solved in Sec. 3.4.

During training, in each forward pass, we build the convolution filters by linearly
combining the elements of the kernel bases using learnable weights. More pre-
cisely, each block kγδ is associate with a sampled basis

{
kγδ1 , . . . , kγδ

dγδ

}
, stored as a

(dγδ, cout,γ , cin,δ, s, s)-dimensional tensor, and a (dγδ)-dimensional tensor of learnable
weights. Then, each block kγδ is built by contracting the sampled basis tensor along
its first dimension using its weights tensor, which can be implemented with a simple
matmul call.

Note that, if ρin,δ occurs n > 1 times in the input type ρin or ρout,γ occurs m > 1
times in the output type ρout, k contains n ·m blocks sharing the same input and
output field types and, therefore, the same basis. Instead of looping over all m · n
blocks, we can group them together and simultaneously contracting the basis with
m · n different set of weights. Unfortunately, if more different field types are present
in the input or output representations, the m · n blocks might not be contiguous
inside k. If that is the case, sparse access of the memory using advanced indexing1 is
necessary. Although this is still more efficient than iterating over all blocks, it can
result in poor runtime performances with respect to conventional CNNs. However,
when both the input and output fields contain a single field type (not necessarily the
same), the basis expansion can be efficiently performed with a single batched matrix
multiplication followed by a reshaping of the tensor. Fortunately, this is often the
case. Indeed, group-convolution based architectures (GCNNs) fall in this category
too.

Because the resulting kernels look precisely like conventional convolution filters, we
can leverage the optimized standard convolution routine present in most common
deep learning frameworks. Furthermore, when using features of a single type as
above and fairly large inputs, basis expansion has only a minor contribution to the
total cost of the layer with respect to the actual convolution. Finally, at test time, as
the learnable weights do not need to be modified, there is no need to perform the
basis expansion at each forward pass. Instead, the kernels can be built once and the
steerable convolution layer converted to a conventional convolution layer without
any additional computational cost with respect to conventional CNNs.

1https://numpy.org/doc/stable/reference/arrays.indexing.html
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4.2 Equivariant Statistics and
Batch-Normalization

In this section we discuss some simple statistics of steerable feature fields. The follow-
ing results are particularly useful to define and to implement the batch normalization
layers in our steerable CNN architectures.

Let G be a group and ρ a representation of G on a vector space V . We assume that a
symmetry in the data also implies a symmetry in its distribution, i.e.

∀g ∈ G ∀y ∈ V Pr(y) = Pr(g.y)

and, so:

∀g ∈ G ∀y ∈ V Pr(y) = Pr(ρ(g)y)

Define G\V the right quotient space of V with respect to the left action of the group
G, i.e. G\V = {G.y | y ∈ V }, where a coset is defined as G.y = {ρ(g)y | g ∈ G}.
See Def. 11 and Def. 13. Note that all vectors within the same coset G.y have
the same probability, i.e. x ∈ G.y =⇒ Pr(x) = Pr(y). Then, defining a section
s : G\V → G (Def. 14) mapping each coset to a representative element, for any vector
y there exists an element g ∈ G such that y = ρ(g)s(G.y), i.e. every vector can be
built by transforming the representative of its coset G.y with the representation of
an element g ∈ G. If the representation ρ is faithful, the element g is unique.

Let’s call R the set of all representative elements, i.e. R = {r = s(G.y) | G.y ∈ G\V }.
Then, it follows that:

E
y∈V

[y] = E
y∈V

[ρ(g)s(G.y)]

= E
g∈G

E
r∈R

[ρ(g)r]

= E
g∈G

[ρ(g) E
r∈R

[r]]

= E
g∈G

[ρ(g)] E
r∈R

[r]

Assuming a normalized Haar measure µ over G2, the expectation over G can be writ-
ten as Eg∈G[ρ(g)] =

∫
G dµ(g)ρ(g). First, we assume ρ is an irreducible representation

of G, which we indicate with ψ for consistency; then, the integral
∫
G dµ(g)ψ(g) is

always equal to the null matrix containing only zeros except when ψ is the trivial
representation ψ0(g) = 1 ∀g ∈ G, whose integral is equal to 1. This implies that the

2We can choose a counting measure for discrete groups such that the integral becomes the usual sum
over the group, normalized by the group’s size.
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mean of any vector transforming according to a non-trivial irreducible representation
is always zero.

Assume now a general representation ρ with an irreps decomposition

ρ(g) = D

(⊕
i∈I

ψi(g)
)
D−1 .

Then the expectation becomes

E
g∈G

[ρ(g)] =
∫
G

dµ(g)ρ(g) = D

(⊕
i∈I

∫
G

dµ(g)ψi(g)
)

︸ ︷︷ ︸
S

D−1

The matrix S =
⊕
i∈I
∫
G dµ(g)ψi(g) is then a null matrix, containing only ones in the

i-th entry of the diagonal if and only if ψi is a trivial representation. Therefore, one
can pre-compute the matrix P = Eg∈G[ρ(g)] = DSD−1 and then estimate the mean
of y from N samples {yi}Ni=1 as ȳ = P 1

N

∑
i yi. It follows that we can estimate the

mean by computing the sample average and then multiplying it by the pre-computed
matrix P .

Note that the regular representation of any group G only contains a single copy of
the trivial representation; in addition, the column of D corresponding to this irrep
always contains the same value in all rows. It follows that P is a constant matrix,
containing the same value in all entries. When G is a discrete group, one can choose
an orthonormal basis such that Pij = 1

|G| . As a result, the multiplication by P only
averages the estimated mean 1

N

∑
i yi over the whole group G, which corresponds to

the usual sharing of the bias parameter in the batch normalization in GCNNs [12].

Assuming centralized data, i.e. Ey∈V = 0, the covariance matrix is:

E
y∈V

[yyT ] = E
y∈V

[ρ(g)s(G.y)s(G.y)Tρ(g)T ]

= E
g∈G

E
r∈R

[ρ(g)rrTρ(g)T ]

= E
g∈G

[ρ(g) E
r∈R

[rrT ]ρ(g)T ]

=
∫
g
ρ(g) E

r∈R
[rrT ]ρ(g)T dµ(g)

Now, note that if ρ is an orthonormal representation, the resulting matrix is an
intertwiner of ρ, that is, it commutes with ρ for any g ∈ G. Besides, if ρ is an
irreducible representation, using Thm. 3, it follows that the covariance matrix needs
to be an isomorphism. From this moment, for simplicity, we restrict our consideration
only to subgroups of O(2) and real representations. This implies that Ey∈V [yyT ]
is either a scalar (for d = 1-dimensional irreps) or a scalar multiple of a 2 × 2
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orthogonal matrix (for d = 2-dimensional representations). However, because the
covariance matrix is also symmetric and semi-positive definite, it must be a multiple
of the identity, i.e. ∃λ ≥ 0 s.t. Ey∈V [yyT ] = λI. Note that

dλ = Tr( E
y∈V

[yyT ]) = E
y∈V

[||y||22] ,

where d is the dimensionality of ρ. Therefore, we can estimate the covariance of y
from N samples {yi}Ni=1 as Q = 1

d λ̄I, where λ̄ = 1
N−1

∑
i ||yi||22.

Consider now an arbitrary representation ρ with an irreps decomposition ρ =
D (
⊕

i∈I ψi)DT . Then, for a vector y in the representation space V of ρ, we write
y = D (

⊕
i∈I yi), where yi is the projection of y in the subspace of ψi. Then, the

covariance matrix can be written as

E
y∈V

[yyT ] =
∫
g
ρ(g) E

r∈R
[rrT ]ρ(g)T dµ(g)

= D

∫
g

(⊕
i∈I

ψi(g)
)
E
r∈R

(⊕
i∈I
ri

)(⊕
i∈I
ri

)T(⊕
i∈I

ψi(g)
)T

dµ(g)

︸ ︷︷ ︸
Q̃

DT

= DQ̃DT

Note that the matrix Q̃ has a block structure, where the block (i, j) contains Q̃ij =∫
g ψi(g)Er∈R

[
rir

T
j

]
ψi(g)T dµ(g), for i, j ∈ I. It follows that Q̃ij is an intertwiner

between ψi and ψj and, therefore, either it is a null matrix, if ψi � ψj , or ∃λij ≥ 0
s.t. Q̃ij = λijI, if ψi ∼= ψj . In general, this condition is not sufficient to obtain
a diagonal covariance Ey∈V [yyT ]. Nevertheless, by assuming λij = 0 whenever
i 6= j, Q̃ assumes a block-diagonal form. By further assuming λii = λjj =: λ for any
i, j ∈ I, it follows that Q̃ = λI and, therefore, Ey∈V [yyT ] = λI.

Note that when ρ is the regular or a quotient representation of H, this corresponds
to the common assumption made in the Batch Normalization layer of GCNNs [12]
(and similarly in CNNs). Consequently, we use this same assumption in the imple-
mentation of our equivariant batch normalization for these representations.

4.3 Representations

A representation ρ : H → Rd is implemented as a direct sum of its irreps combined
with an invertible d × d change of basis. Therefore, for any group H, we create
all its irreducible representations {ψi}i in a functional form (in this way, we can
generate all irreps even for infinite groups, which have an infinite number of irreps).
A representation ρ = D (

⊕
i∈I ψi)D−1 is then identified by the change of basis D
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and the index set I. This enables us to immediately decompose the kernel constraint
in terms of irreps as in Sec. 3.4.

In order to deal with arbitrary representations ρ of finite groups H, we can use
Character theory as explained in Sec. 2.6 to find the index set I and, then, numer-
ically solve the linear system ∀h ∈ H ρ(h) = D (

⊕
i∈I ψi(h))D−1 for D, which is

equivalent to

∀h ∈ H

I ⊗ ρ(h)−
(⊕
i∈I

ψi(h)
)T
⊗ I

 vec(D) = 0

where I is the d× d identity matrix. In practice, because all the representations used
are either irreducible representations or induced representations, we never need to
use this algorithm. In the second case, which includes regular and quotient repre-
sentations as special cases, we directly build the representation by first computing
the multiplicity of the irreps in I and then generating the change of basis D using
the method described in Appendix G.

4.3.1 Group Restriction

To efficiently implement group restriction, we leverage the following property. Given
H ≤ G and a representation ρ = D (

⊕
i∈I ψi)D−1 of G, it holds that:

ResGH ρ = D

(⊕
i∈I

ResGH ψi

)
D−1 .

ResGH ψi is not in general an irrep ofH, but will be equal to ResGH ψi = Di

(⊕
j∈Ii σj

)
D−1
i ,

where {σj}j are irreps of H. We can, therefore, analytically restrict each irrep of
each group, i.e. pre-compute (in a functional form) all possible ResGH ψi. Then, the
restriction of an arbitrary representation can be computed as above.

4.3.2 Representation Disentanglement

Sometimes, it happens that, through restriction, a representation can split in two
or more independent representations. For instance, the restriction of the regular
representation ρGreg of a group G to a subgroup H results in a representation con-
taining |G : H| copies of the regular representation of H, i.e. one for each coset in
G/H. Recall that |G : H| is the index of H in G, see Def. 12. However, depending
on how the representation ρGreg is defined, the restricted representation might not be
block-diagonal and, so, the subgroup’s regular representations might not be clearly
separated. In other words, ∃P s.t. ρGreg = P

⊕|G:H|
i ρHregP

−1. Because any element
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g ∈ G can be uniquely identified by an element h ∈ H and a coset gH ∈ G/H, the
matrix P is necessarily a permutation matrix.

For example, this happens when restricting the regular representation of G = D3:

g e r r2 f rf r2f

ρD3
reg(g)



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0





0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0





0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0





0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0





0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0



to the reflection group H = ({±1}, ∗) ∼= C2:

h e f

(
ResD3

C2
ρD3

reg(g)
)

(h)



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0



Indeed, in ResD3
C2
ρD3

reg(g), the three pairs of entries (1, 4), (2, 6) and (3, 5) never
mix with each other but only permute internally. Moreover, each pair transforms
according to ρC2

reg. Through a permutation of the entries P , it is possible to make all
the entries belonging to the same pair contiguous. This reshuffled representation is
then equal to ρC2

reg⊕ρC2
reg⊕ρC2

reg. Though theoretically equivalent, an implementation of
this representation where the entries are contiguous is convenient when computing
functions over single fields like batch normalization.

Given a d-dimensional representation ρ = D (
⊕

i∈I ψi)D−1 : G → GL(Rd), one
can always find a permutation matrix P which decomposes ρ is a direct sum
ρ = P (ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρn)P T of n ≥ 1 sub-representations. In general, this de-
composition is a direct consequence of the sparsity of the matrix D. Indeed, to
find P , it is sufficient to check for each dimension j ∈ {1, . . . , d} in the represen-
tation space of ρ, for which irreps ψi the block Dj,i of D has at least a non-zero
entry. This property defines a bipartite graph between the set of irreps {ψi}i∈I
and the dimensions {j = 1, . . . , d} in the representation space of ρ. Note that the
connected components of this graph correspond to the sub-representations {ρk} in
ρ. Thus, by finding these connected components, one obtains the matrix P and the
decomposition above.
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4.4 e2cnn Library

An implementation of the methods described in this work has been released in the
form of a Python library based on PyTorch at https://github.com/QUVA-Lab/e2cnn.
We provide an implementation of different mathematical objects (e.g. groups,
representations, irreps, direct sum, induced representations) and many equivariant
layers and operations (e.g. steerable convolution Sec. 3.3, equivariant non-linearities
and invariant pooling Sec. 3.6, batch normalization Sec. 4.2, dropout, spatial pooling
and weight initialization).

We extend PyTorch’s tensors to geometric tensors to be able to describe feature
fields. Recall that feature fields are typed features associated with a transformation
law, Sec 3.2. Analogously, a geometric tensor is a wrapper class containing both
a torch.Tensor instance and a field type. Field types are objects describing the
symmetry G = (R2,+)oH considered and the transformation law of feature fields
under the action of the symmetry group H, i.e. a representation ρ =

⊕
i ρi : H →

GL(()Rc). All equivariant layers are associated to a pair of input and output types,
enabling a simple form of dynamic type-checking. This prevents one from feeding
feature fields into layers whose transformations laws are not compatible, reducing
the risk of breaking the model’s equivariance during its design.

We build a high-level user interface to abstract away most of the complexity arising
from group representation theory and the details about the kernel space constraints
and their solutions. The following code snippets are an example of how the first
convolution layer of a C8-equivariant network is built and used.

1 from e2cnn import gspaces

2 from e2cnn import nn

3 import torch

First, the necessary packages are imported.

4 r2_act = gspaces.Rot2dOnR2(N=8)

5 feat_type_in = nn.FieldType(r2_act, 3*[r2_act.trivial_repr])

6 feat_type_out = nn.FieldType(r2_act, 10*[r2_act.regular_repr])

Now, all that is needed to define a convolution layer is choosing a group G =
(R2,+) oH and how it acts on the input and output features. In line 4, we have
chosen the symmetry group H = C8 and indicated that it acts on the plane R2

via planar rotations. In line 5, we have defined the field type of the input ρin by
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specifying it contains 3 scalar fields, described by trivial representations ψ (e.g. a
RGB image, see also Sec. 3.2), i.e. ρin =

⊕3
i=1 ψ. Similarly, in line 6, we have built

the output type with 10 regular representations ρC8
reg of C8, i.e. ρout =

⊕10
j=1 ρ

C8
reg.

7 conv = nn.R2Conv(feat_type_in, feat_type_out, kernel_size=5)

8 relu = nn.ReLU(feat_type_out)

Hence, we can construct the steerable convolution layer just by passing the input
and output field types, line 7. This layer also supports most of torch.Conv2d’s
parameters, e.g. kernel_size, padding or stride. Because the regular represen-
tation acts with permutation matrices, it supports point-wise non-linearities like
ReLU. Therefore, in line 8, we define a ReLU layer which can act on the output of
the convolution layer. Note that this layer does not change the field type, so it is not
necessary to specify an output type.

9 x = torch.randn(16, 3, 32, 32)

10 x = nn.GeometricTensor(x, feat_type_in)

11

12 y = relu(conv(x))

In line 9, we construct an example of input features as a torch.Tensor and in
line 10 wrap it in a GeometricTensor. Note that we associated it with the input
type of the convolution layer defined earlier. Finally, we can compose the layers by
applying them sequentially on the input tensor as usual, line 11.
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5Experiments

„In theory, there is no difference between theory
and practice; but in practice, there is.

— Anonymous

The theory described in the previous chapters supports a wide range of models,
allowing for many different groups, representations and non-linearities; see Sec. 3.6.
As no specific choice is preferred, in Sec. 5.1, we perform a broad experimental study
comparing many different architectural designs. In order to ensure a fair comparison
of the models, experiments are carried out on three variants of the MNIST dataset
with different types of symmetries: the classical dataset with untransformed digits, a
version where digits are randomly rotated and one with both rotated and reflected
digits. The symmetries of the three datasets are respectively {e}, SO(2) and O(2).

In Sec. 5.2, we compare local equivariance versus global invariance. In particular,
we find that enforcing higher levels of invariance can sometimes be a wrong bias
and result in a loss of accuracy. Therefore, we try to bypass this problem by
exploiting local symmetries through the use of group restriction. To verify the
hypothesis that equivariant networks exhibit higher data efficiency, we compare
their convergence speed in Sec. 5.3. Furthermore, in Sec. 5.4, we design two new
equivariant architectures that surpass the current state-of-the-art on the MNIST rot
dataset.

In Sec. 5.5 and 5.6, we use the observations from the previous experiments to design
equivariant versions of some popular image classification models and evaluate them
on the CIFAR-10, CIFAR-100 and STL-10 datasets. These three datasets do not
show strong global rotational symmetries but, rather, consist of natural images with
preferred orientations. Although a classical globally-equivariant design might not be
optimal, these datasets can show many local symmetries which could be exploited
by reducing the degree of equivariance at different depths of the models (see also
Sec. 3.7). Hence, they represent a suitable test to understand if our design principle
is beneficial.

The code for our experiments will be uploaded at the following URL: https://
github.com/gabri95/e2cnn_experiments.
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5.1 Model benchmarking on transformed MNIST
datasets

In this section, we analyze the relative performances of several equivariant architec-
tures supported by the framework here described. Models are compared on three
versions of MNIST associated with different global symmetries:

• {e}: MNIST-12k

• SO(2): rotated MNIST (also MNIST-rot): this dataset was originally built from
MNIST 12K by rotating each digit by a random angle.

• O(2): MNIST-O(2): we generate it from MNIST-rot by randomly mirroring each
digit in the training set and extending the test with a mirrored version of it.

All datasets contain 12K training samples (split in 10K + 2K between training and
validation) and 50K test images (100K in MNIST-O(2)). The different datasets help
analyze the effects of different equivariance groups H in the presence of different
global symmetries. For a fair comparison between models with smaller equivariance
groups and because it would be used in a real application, during training we
augment images with random transformations among those in the dataset used.

We report the performances of 57 different models on these three datasets in Tab. 5.1.
Each model is identified by the entries in the first four columns, i.e., equivariance
group H, group representations, non-linearities and invariant maps. We cite works
that previously proposed a similar model design in the fifth column. For each
experiment, we report the mean and standard deviation of the test errors computed
over (at least) 6 runs. All architectures are built from the base one in Tab. E.1
using the group, representations, non-linearities and the invariant map specified
in each row and adapting the width of each layer to maintain the number of
parameters of the models (approximatively) constant. As a result, different models
can have a different number of channels, depending on the particular group (and
representation) chosen. In order to build models that are globally invariant to their
equivariance group, all architectures include an invariant map layer before the fully
connected layers. This module maps the feature fields to scalar fields and is followed
by spatial pooling, generating an invariant feature vector. We try to maintain the
size of this invariant feature vector approximatively fixed by scaling the width of
the output of the previous convolution according to the particular invariant map
considered.
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We will now analyze the results reported in Tab. 5.1. More details on the training
procedure are in Appendix E.1.
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group feature types (representation) non-linearity invariant map citation MNIST O(2) MNIST rot MNIST 12k

1 {e} (conventional CNN) ELU - - 5.53± 0.20 2.87± 0.09 0.91± 0.06

2 C1 [45, 2] 5.19± 0.08 2.48± 0.13 0.82± 0.01

3 C2 [45, 2] 3.29± 0.07 1.32± 0.02 0.87± 0.04

4 C3 - 2.87± 0.04 1.19± 0.06 0.80± 0.03

5 C4 [12, 13, 45, 2, 18] 2.40± 0.05 1.02± 0.03 0.99± 0.03

6 C6 [22] 2.08± 0.03 0.89± 0.03 0.84± 0.02

7 C8 [45, 2] 1.96± 0.04 0.84± 0.02 0.89± 0.03

8 C12 [45] 1.95± 0.07 0.80± 0.03 0.89± 0.03

9 C16 [45, 2] 1.93± 0.04 0.82± 0.02 0.95± 0.04

10 C20

regular ρreg

[45] 1.95± 0.05 0.83± 0.05 0.94± 0.06

11 C4 5ρreg⊕2ρC4/C2
quot ⊕2ψ0 [13] 2.43± 0.05 1.03± 0.05 1.01± 0.03

12 C8 5ρreg⊕2ρC8/C2
quot ⊕2ρC8/C4

quot ⊕2ψ0 - 2.03± 0.05 0.84± 0.05 0.91± 0.02

13 C12 5ρreg⊕2ρC12/C2
quot ⊕2ρC12/C4

quot ⊕3ψ0 - 2.04± 0.04 0.81± 0.02 0.95± 0.02

14 C16 5ρreg⊕2ρC16/C2
quot ⊕2ρC16/C4

quot ⊕4ψ0 - 2.00± 0.01 0.86± 0.04 0.98± 0.04

15 C20

quotient

5ρreg⊕2ρC20/C2
quot ⊕2ρC20/C4

quot ⊕5ψ0

ELU

- 2.01± 0.05 0.83± 0.03 0.96± 0.04

16 regular/scalar ψ0
conv−−→ ρreg

G-pool−−−−→ ψ0 ELU, G-pooling [12, 31] 2.02± 0.02 0.90± 0.03 0.93± 0.04

17 regular/vector ψ1
conv−−→ ρreg

vector pool−−−−−−→ ψ1 vector field [30, 29] 2.12± 0.02 1.07± 0.03 0.78± 0.03

18

C16

mixed vector ρreg⊕ψ1
conv−−→2ρreg

vector−−−→
pool

ρreg⊕ψ1 ELU, vector field

G-pooling

- 1.87± 0.03 0.83± 0.02 0.63± 0.02

19 D1 - 3.40± 0.07 3.44± 0.10 0.98± 0.03

20 D2 - 2.42± 0.07 2.39± 0.04 1.05± 0.03

21 D3 - 2.17± 0.06 2.15± 0.05 0.94± 0.02

22 D4 [12, 13, 43] 1.88± 0.04 1.87± 0.04 1.69± 0.03

23 D6 [22] 1.77± 0.06 1.77± 0.04 1.00± 0.03

24 D8 - 1.68± 0.06 1.73± 0.03 1.64± 0.02

25 D12 - 1.66± 0.05 1.65± 0.05 1.67± 0.01

26 D16 - 1.62± 0.04 1.65± 0.02 1.68± 0.04

27 D20

regular ρreg ELU G-pooling

- 1.64± 0.06 1.62± 0.05 1.69± 0.03

28 D16 regular/scalar ψ0,0
conv−−→ ρreg

G-pool−−−−→ ψ0,0 ELU, G-pooling - 1.92± 0.03 1.88± 0.07 1.74± 0.04

29 irreps ≤ 1
⊕1
i=0 ψi - 2.98± 0.04 1.38± 0.09 1.29± 0.05

30 irreps ≤ 3
⊕3
i=0 ψi - 3.02± 0.18 1.38± 0.09 1.27± 0.03

31 irreps ≤ 5
⊕5
i=0 ψi - 3.24± 0.05 1.44± 0.10 1.36± 0.04

32 irreps ≤ 7
⊕7
i=0 ψi - 3.30± 0.11 1.51± 0.10 1.40± 0.07

33 C-irreps ≤ 1
⊕1
i=0 ψ

Cm
i [48] 3.39± 0.10 1.47± 0.06 1.42± 0.04

34 C-irreps ≤ 3
⊕3
i=0 ψ

Cm
i [48] 3.48± 0.16 1.51± 0.05 1.53± 0.07

35 C-irreps ≤ 5
⊕5
i=0 ψ

Cm
i - 3.59± 0.08 1.59± 0.05 1.55± 0.06

36 C-irreps ≤ 7
⊕7
i=0 ψ

Cm
i

ELU, norm-ReLU conv2triv

- 3.64± 0.12 1.61± 0.06 1.62± 0.03

37 ELU, squash - 3.10± 0.09 1.41± 0.04 1.46± 0.05

38 ELU, norm-ReLU - 3.23± 0.08 1.38± 0.08 1.33± 0.03

39 ELU, shared norm-ReLU - 2.88± 0.11 1.15± 0.06 1.18± 0.03

40 shared norm-ReLU

norm

- 3.61± 0.09 1.57± 0.05 1.88± 0.05

41 ELU, gate - 2.37± 0.06 1.09± 0.03 1.10± 0.02

42 ELU, shared gate
conv2triv

- 2.33± 0.06 1.11± 0.03 1.12± 0.04

43 ELU, gate - 2.23± 0.09 1.04± 0.04 1.05± 0.06

44

SO(2)

irreps ≤ 3
⊕3
i=0 ψi

ELU, shared gate
norm

- 2.20± 0.06 1.01± 0.03 1.03± 0.03

45 irreps = 0 ψ0,0 ELU - - 5.46± 0.46 5.21± 0.29 3.98± 0.04

46 irreps ≤ 1 ψ0,0 ⊕ ψ1,0 ⊕ 2ψ1,1 - 3.31± 0.17 3.37± 0.18 3.05± 0.09

47 irreps ≤ 3 ψ0,0 ⊕ ψ1,0
⊕3
i=1 2ψ1,i - 3.42± 0.03 3.41± 0.10 3.86± 0.09

48 irreps ≤ 5 ψ0,0 ⊕ ψ1,0
⊕5
i=1 2ψ1,i - 3.59± 0.13 3.78± 0.31 4.17± 0.15

49 irreps ≤ 7 ψ0,0 ⊕ ψ1,0
⊕7
i=1 2ψ1,i

ELU, norm-ReLU O(2)-conv2triv

- 3.84± 0.25 3.90± 0.18 4.57± 0.27

50 Ind-irreps ≤ 1 Ind ψSO(2)
0 ⊕ Ind ψSO(2)

1 - 2.72± 0.05 2.70± 0.11 2.39± 0.07

51 Ind-irreps ≤ 3 Ind ψSO(2)
0

⊕3
i=1 Ind ψSO(2)

i - 2.66± 0.07 2.65± 0.12 2.25± 0.06

52 Ind-irreps ≤ 5 Ind ψSO(2)
0

⊕5
i=1 Ind ψSO(2)

i - 2.71± 0.11 2.84± 0.10 2.39± 0.09

53 Ind-irreps ≤ 7 Ind ψSO(2)
0

⊕7
i=1 Ind ψSO(2)

i

ELU, Ind norm-ReLU Ind-conv2triv

- 2.80± 0.12 2.85± 0.06 2.25± 0.08

54 O(2)-conv2triv - 2.39± 0.05 2.38± 0.07 2.28± 0.07

55

irreps ≤ 3 ψ0,0 ⊕ ψ1,0
⊕3
i=1 2ψ1,i ELU, gate

norm - 2.21± 0.09 2.24± 0.06 2.15± 0.03

56 Ind-conv2triv - 2.13± 0.04 2.09± 0.05 2.05± 0.05

57

O(2)

Ind-irreps ≤ 3 Ind ψSO(2)
0

⊕3
i=1 Ind ψSO(2)

i
ELU, Ind gate

Ind-norm - 1.96± 0.06 1.95± 0.05 1.85± 0.07

Tab. 5.1.: Benchmarking of H-steerable CNNs on MNIST variants using different groups H, feature types
(representations), non-linearities and final invariant maps. The feature types in the second column
only indicate the relative frequency of different individual field types and the actual multiplicities of
each field type is different for each layer. The fifth column credits previous works which employed a
similar model design. See also Sec. 3.6, 5.1 and Appendix D and F.
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Fig. 5.1.: Test error of CN and DN regular steerable CNNs for different rotation orders N
on all the three MNIST datasets.
• Left: All equivariant models improve upon the non-equivariant CNN baseline on
MNIST O(2), with DN models achieving best results.
• Middle: The baseline CNN and the CN models obtain lower errors than before,
because of the lower complexity of this dataset. Because the DN models are invari-
ant to reflections, the previous MNIST O(2) dataset and the current MNIST rot
one are indistinguishable. Through restriction, the DN |5CN model can exploit
local reflectional symmetries being only globally rotation invariant. This results
in the best performance.
• Right: Globally invariant CN and DN models can’t improve over the conventional
CNN baseline. Again, the use of group restriction enables to construction of better
models (CN |5{e} and DN |5{e}).

Regular models: We first discuss models with regular feature fields equivariant
to the finite groups CN and DN , for different number of rotations N (respectively,
rows 2-10 and 19-27 in Tab. 5.1). As discussed in Sec. 3.1 and 3.2, these models
are equivalent to the popular group-convolution based architectures (GCNNs) [12,
45]. In the DN models, we define the action of the reflection element along the
vertical axis. Moreover, we adopt ELU [6] and group pooling (Sec. 3.6) as pointwise
non-linearity and final invariant map. We find that this configuration generally
achieves great performance. This is because such field types are the most expressive
(although expensive) ones and allow features to represent arbitrary, unconstrained
functions over the group H.

We also visualize the results obtained with regular features in Fig. 5.1. On MNIST O(2)
and MNIST rot, the test error decreases when incrementing the number of rotations
N , but the performance saturates between N = 8 and N = 12. As expected, in
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MNIST O(2), introducing reflection equivariance consistently improves accuracy
(compare CN and DN models with the same N) as it ensures generalization over
reflections, which are part of the transformations of the dataset. Additionally, any
group H gives better results than the baseline conventional CNN, which is associ-
ated with H = {e}. Removing reflections produces a simpler dataset, MNIST rot;
accordingly, we observe significant improvements in the performance of the CNN
baseline and the CN models. Conversely, the test error of the DN models is left
almost unchanged. This is not surprising as equivariance to reflections implies that
inference is independent of reflections of the input. Therefore, these models can not
distinguish the two variants of the dataset. In particular, note that the D1 model,
which is equivariant only to vertical reflections (no rotation equivariance), is even
worse than the conventional CNN. Indeed, because in this case the dataset does
not contain reflected digits, global reflection equivariance only results in a loss of
capacity of the network and in less discriminative features before the fully connected
classifier. We solve this problem by introducing group restriction to CN ≤ DN be-
fore the last convolution layer (DN |5CN models in the figure) so that the features
produced are not invariant to reflections. We find that these new models slightly
improve over the CN models, supporting our hypothesis that they can exploit the
local reflectional symmetries in the images. We will discuss these models in more
detail in Sec. 5.2.

Fig. 5.2.: Two samples of 4 and 7
from the MNIST dataset.
A rotation by π

2 and a re-
flection can confuse the
two examples.

Analogously, even in the untransformed dataset
MNIST 12k, the pure DN models have the worst
test accuracies. However, we observe that both
DN and CN models do not show monotonically
decreasing trends as in the two previous cases.
This is likely explained by the fact that some dig-
its can be approximatively transformed into each
other with the symmetries considered. For in-
stance, Fig. 5.2 shows two samples from the orig-
inal MNIST dataset belonging to different classes.
Note that a rotation by π

2 followed by a vertical
reflection transforms the example of 4 into a digit
that resembles the example of 7 (first line). Similarly, a vertical reflection followed
by a π

2 rotation transforms the example of 7 into an image that resembles a 4 (second
line). These examples would be confused by a D4n-invariant model1. When a model
is invariant to these transformations, it will find it harder to distinguish such samples.
Indeed, Fig. 5.1(right) shows drops in performance when N is a multiple of 2 or 4 or
generally when N is large (as H covers approximatively all rotations). Finally, the
lowest test errors are achieved combining large equivariance groups H with group

1 Other examples include

9

and

6

(6 and 9) or
5

and
2

(2 and 5), which are related by a π rotation.
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restriction (DN |5{e} and CN |5{e} in the figure) - with DN models outperforming CN
ones-, being able to leverage the local symmetries without losing information about
the global orientation.

Quotient models: As introduced in Sec. 3.6, regular representations are a special
case of quotient representations. Quotient representations allow more compact
features at the cost of enforcing invariance to a subgroup in both the features and
the filters. To not excessively reduce the expressiveness of the model, we experiment
with feature fields that comprise mixtures of different quotient representations. More
details on the chosen quotient representations, together with some insights about
the symmetries associated with them, can be found in Appendix D. In particular, we
consider CN -equivariant models in rows 11-15 of Tab. 5.1. Although the individual
feature fields are smaller than the regular ones, by adapting their multiplicities to fix
the number of parameters, the resulting quotient models are approximatively as large
as the regular ones and, therefore, share their same memory and computational
cost. Our experiments do not show any relevant improvement over the regular
models. Nevertheless, we point out that the set of existing quotient representations
and all their possible combinations is much larger. We do not expect our study to
be exhaustive in this sense; a more extensive search in this space might still be
necessary.

Group pooling and vector-field non-linearities : Both operations can be used to
reduce the size of regular feature fields throughout the network by projecting them,
respectively, to scalar or vector fields (see Sec. 3.6). These pooling operations
compress the features in the regular fields, which can lead to lower memory and
compute requirements. Nevertheless, for a fair comparison, we scale the models
to have the same number of parameters. This results in much wider architectures
than the ones using regular features (GCNNs) in the first paragraph. For simplicity,
in our experiments (rows 16 and 17) we only consider C16-equivariant models. As
these layers discard part of the information content of the regular features, they
result in lower test accuracies with respect to the pure regular models on the two
transformed datasets. Contrary to expectations, we find that networks using group
pooling - which discards all the orientation information in the features- work better
than networks using vector-field non-linearities. This is likely a consequence of the
fact that group pooling projects to a smaller space and, therefore, has less trainable
parameters per individual field; therefore, when the network is scaled up to match
the number of parameters, it results in a wider model. Conversely, on the original
MNIST 12k dataset, group pooling performs comparably to regular nets, but the
vector-field model achieves the best accuracies among these models. We also design
a mixed model with regular features and which applies vector-field non-linearity
only to half of its fields at each layer (row 18). Although it performs alike with
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the pure regular networks on MNIST O(2) and MNIST rot, it is the best model on
MNIST 12k. Finally, we implement a D16 equivariant model based on group pooling
(row 28). As before, it is always outperformed by the regular models, here even on
the untransformed MNIST 12k.

SO(2) irrep models: Because SO(2) is a continuous group, it has infinitely many
elements and it is not possible to build its regular representation explicitly. Instead,
to build an SO(2) equivariant network with finite computational resources, we rely
on irreducible representations (see Sec. 2.3 and Sec. 2.7.2). As discussed in Sec. 3.2,
scalar and vector fields transform under the irreps ψSO(2)

0 and ψSO(2)
1 of SO(2). We

observe that, in practice, none of these models obtain competitive performance with
respect to regular models (i.e., GCNNs). This finding is also interesting in a more
general context as it suggests that a network design based on irreps, as often done
in the 3D setting for SE(3) ∼= (R3,+)o SO(3)-equivariant networks [42, 44, 25, 26,
1], is probably sub-optimal.

We first consider several models with a design similar to the popular Harmonic Net-
works [48]. In rows 29-32, models use features containing all irreps with frequency
smaller than a maximum one. We experiment with different maximum frequencies.
We choose pointwise ELU on trivial representations (scalar fields) and norm-ReLU
on the other ones as non-linearities. Instead of applying an additional invariant
map, the last convolution layer maps only to trivial representations to produce
invariant features (conv2triv). It emerges that features containing frequencies up to
1 or 3 work equally well, whereas introducing higher frequencies only deteriorates
the performance. It is possible that higher frequencies are not necessary to build
good representations of the patterns appearing in MNIST, so their use results in a
loss of expressiveness of the model by reducing the multiplicity of the more useful
low-frequency features. Note that our framework is based on the real field R and,
therefore, based on real representations. This differs from the original Harmonic
Networks, which employed the complex irreps of SO(2). However, simulating the op-
erations in a complex steerable CNN with real numbers results in an equivalent real
steerable CNN with lower-dimensional kernel spaces. A more detailed explanation is
provided in Appendix B.3. The models in rows 33-36 are equivalent to those in rows
29-32 but only use the kernel subspace which is solution to the kernel constraint
associated with complex irreps. All models perform worse than their counterparts
with the full real kernel space.

We also consider other variants of irreps-based architectures. For simplicity, we
only used irreps with frequency up to 3 in the experiments. In row 38, the last
convolution does not produce only scalar features but all irreps. Then, the invariant
map computes the norm of each non-invariant field producing invariant scalar fields.
However, we do not see particular benefits over the previous harmonic networks.
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Other variants include different non-linearities and invariant maps. We defer their
discussion to Appendix F.

Finally, the models in rows 41-44 employ gated non-linearities instead of norm-
ReLUs. We experiment with two different strategies of applying gates and with two
different invariant maps. Model designs based on gated non-linearities achieve the
best accuracy among the irreps-based models and obtain the closest performance to
the models with regular features. This result is consistent with [44], which first used
these non-linearities.

O(2) models: Like SO(2), the group O(2) is a continuous group, so we can not
use its regular representation. We first implement O(2)-equivariant versions of
the SO(2) models described above. In rows 46-49, we use feature fields made of
O(2)’s irreps with norm-ReLU non-linearity. While in SO(2), each irrep occurs only
one in the regular representation of the group, the two-dimensional irreps of O(2)
have multiplicity two. Drawing inspiration from this observation, we choose the
multiplicity of these irreps in the models’ features to be twice that of one-dimensional
irreps. We also adapt the final conv2triv invariant map (O(2)-conv2triv). Instead of
producing only trivial (invariant) ψO(2)

0,0 -fields, the last convolution layer produces
half trivial ψO(2)

0,0 -flips and half sign-flip ψ
O(2)
1,0 -fields. Sign-flip ψ

O(2)
1,0 features are

scalars whose sign flips under the action of the reflection element in O(2) but which
are invariant to rotations. See Sec. 2.7.2 for more details on the irreps of O(2). In
order to produce completely invariant features, we compute the absolute value of the
sign-flip ψO(2)

1,0 fields. As earlier, higher frequency fields result in worse performance.
Surprisingly, these models have larger test errors than the corresponding SO(2)
models. It is possible that the kernel space enforced by this choice of fields limits the
expressiveness of the model excessively.

A common choice of kernels in geometric deep learning (e.g., used in many graph
convolutional networks), are isotropic kernels. These kernels only depends on their
radial component and, therefore, are invariant to rotations and reflections, i.e. they
satisfy k(gx) = k(x) ∀g ∈ O(2). We note that these kernels correspond to the
solution of the kernel constraint for input and output ψO(2)

0,0 -fields, where ψO(2)
0,0 is

the trivial representation of O(2). We implement an O(2) invariant model using this
kernel space in row 45: the model’s performance is comparable with the baseline
CNN on MNIST O(2), but it is significantly worse on the other two datasets.

To design better O(2) equivariant models, we build a new architecture by induction
on the previous SO(2) architectures. More precisely, we replace each ψSO(2)-field,
with ψSO(2) an irrep of SO(2), with a IndO(2)

SO(2) ψ
SO(2)-field. Recall that IndO(2)

SO(2) ψ
SO(2)

is a representation of O(2); see Sec. 2.4 for more details on induced representations.
A IndO(2)

SO(2) ψ
SO(2)-field can be interpreted as a pair of ψSO(2)-fields: the action of
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a rotation independently transforms each of them with ψSO(2) while reflections
permute them. Moreover, this construction leads to the same multiplicity for each
O(2) irrep used in the previous O(2) model. One can verify this by noting that
IndO(2)

SO(2) ψ
SO(2) always decomposes in two O(2) irreps which are isomorphic to ψ

when restricted to SO(2). When ψ is two dimensional, these are two copies of the
two dimensional O(2) irreps; when ψ is the trivial representation, IndO(2)

SO(2) ψ
SO(2)

contains both the trivial and the sing-flip representations of O(2). Therefore, ignoring
non-linearities, this model is equivalent to the previous O(2) model (recall that
different bases are irrelevant in linear networks, see Sec. 3.6). Here, however, we
employ Ind norm-ReLU non-linearity, which independently applies the usual norm-
ReLU to the two ψ-fields contained in a Ind ψ-field but sharing the bias between
them. Note that this operation does not commute with the change of basis which
relates the features of this model to those of the equivalent O(2)’s irreps model,
making these two models different. Similarly, we adapt the final invariant map
(Ind-conv2triv): we first map to IndO(2)

SO(2) ψ
SO(2)
0 -fields through convolution and then

we pool over the two ψSO(2)-subfields of each of them. Note that IndO(2)
SO(2) ψ

SO(2)
0

can be understood as the regular representation of ({±1}, ∗) ∼= O(2)/ SO(2) and,
therefore, the last pooling operation is effectively a G-pooling over the reflection
subgroup. These models, as reported in rows 50-53, achieve significantly lower test
errors on all datasets; in particular, they even improve over the SO(2)-equivariant
models on MNIST O(2).

As for SO(2), architectures that use gated non-linearities achieve the best results
among all O(2) models. In rows 54-55, we consider the pure irreps design as initially
used with norm-ReLu above. Again, in rows 56-57 we adapt these architectures
using induced SO(2)’s irreps (Ind gate). For each ψSO(2)-subfield in a Ind ψSO(2)-field,
the model learns a different gate. Because a reflection permutes the two subfields,
the two gates need to permute accordingly. This is realized by modeling gates as
induced scalar fields, i.e., IndO(2)

SO(2) ψ
SO(2)
0 fields, instead of ψO(2)

0,0 scalar fields. By
combining gated non-linearities and induced features, this design leads to the best
O(2)-steerable networks, achieving accuracy close to, although still slightly worse
than, those of regular DN models. We explain in greater detail all induced O(2)
architectures in Appendix F.

5.2 Exploiting local symmetries in MNIST via group
restriction

Local patterns in the MNIST dataset can show rotational and reflectional symmetries.
This holds for all the three variants of the dataset, even if their global symmetries
are different. As noticed in the previous section, while DN and O(2)-equivariant
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restriction depth
MNIST rot MNIST 12k

group test error (%) group test error (%) group test error (%)

(0) C16 0.82 ± 0.02 {e} 0.82 ± 0.01 {e} 0.82 ± 0.01

1

D16 |C16

0.86 ± 0.05

D16 |{e}

0.79 ± 0.03

C16 |{e}

0.80 ± 0.03
2 0.82 ± 0.03 0.74 ± 0.03 0.77 ± 0.03
3 0.77 ± 0.03 0.73 ± 0.03 0.76 ± 0.03
4 0.79 ± 0.03 0.72 ± 0.02 0.77 ± 0.03
5 0.78 ± 0.04 0.68 ± 0.04 0.75 ± 0.02

no restriction D16 1.65 ± 0.02 D16 1.68 ± 0.04 C16 0.95 ± 0.04

Tab. 5.2.: Group restriction allows the use of larger symmetry groups than the group of
global symmetries of the data. Here, we explore the different choices of local
symmetries and restriction depth on MNIST rot and MNIST 12k. Delaying
restriction to deeper layers generally leads to better performance. Additionally,
the use of restriction always improve over the models which are equivariant only
to the global symmetries.

models can leverage these local symmetries, they are also globally invariant to
them. This implies that the final features used for classification can not carry any
information about the orientation or the chirality of the input digit. Obviously, this is
not desirable when these symmetries are not present in the data, as this information
can be useful to discriminate different digits. Conversely, a model that is equivariant
only to the global symmetries does not exploit the local ones, usually a larger group.
To solve this issue, in Sec. 3.7 we introduced the group restriction operation.

We experiment with different models on MNIST rot and MNIST 12k, which are
locally equivariant to either DN or CN . Thanks to restriction, the features produced
by all models are equivariant only to the group of symmetries of the dataset, which is
CN for MNIST rot and {e} (i.e., no equivariance) for MNIST 12k. Because restriction
can be introduced at any layer, we study the effect of applying it at different depths.
Due to the hierarchical structure of CNNs, the field of view of a neuron in a feature
map grows with the depth of the network; as a result, the depth where the restriction
is applied is strictly related to the maximum scale at which the local symmetries still
hold.

The results of our experiments are summarized in Tab. 5.2. We observe that preserv-
ing the local equivariance for more layers generally improves the performance of
the model. In particular, it is always optimal to exploit the local symmetries through
restriction than considering a model only equivariant to the global ones (compare
the row (0) with the others in the table). Besides, all models using restriction largely
improve over the corresponding globally invariant models (no restriction row in the
table). In Tab. 5.2, we only reported the results obtained with N = 16 but Fig. 5.1
summarizes our experiments for different values of N , when restricting after the 5-th
convolution layer (DN |5CN , DN |5{e} and CN |5{e} curves). The curves in Fig. 5.1
support our previous observations.

5.2 Exploiting local symmetries in MNIST via group restriction 77



0 1000 2000 3000 4000
iterations

100

101

102

va
lid

at
io

n 
er

ro
r (

%
)

0 1000 2000 3000 4000
iterations

10 1

100

va
lid

at
io

n 
lo

ss

CNN
C2
C4
C8
C16

Fig. 5.3.: Validation error and loss registered while training a conventional CNN and CN -
equivariant models on MNIST rot. Larger equivariance groups result in signifi-
cantly faster converge.

5.3 On the convergence of Steerable CNNs

While conducting our experiments, we noted that equivariant networks converge
more rapidly than conventional CNNs. In Fig. 5.3, we illustrate this behavior for the
regular CN models trained on MNIST rot discussed in Sec. 5.1 We observe that larger
groups (larger N) always minimize the validation metric faster, although the benefit
shown by increasing the group size quickly vanishes after N = 8. Note that, because
all models are adapted such that the number of parameters is approximatively the
same, this result can not be explained only by the lower dimensional kernel space
associated with larger groups. Instead, a more plausible answer is the stronger
generalization capability of equivariant networks. Indeed, a G-equivariant model
reduces the learning task on the smaller quotient space defined by the action of the
group G on the data, that is on the space containing equivalence classes of samples
defined by the equivalence relation x ∼ x′ ⇔ ∃ g ∈ G s.t. x = g.x′. When
G = {e}, i.e., the model is a simple MLP, every sample is different and the network
needs to learn each of them independently. When the data points are images, the
use of a G = (R2,+) equivariant network, i.e., a conventional CNN, enables the
generalization over classes of translated images. H-steerable CNNs extend the
equivalence classes to G = (R2,+)oH, further improving generalization. In other
words, observing a single data point x is equivalent to observe its whole orbit
G.x = {g.x|g ∈ G}. This suggests that equivariance enhances the data efficiency
of the learning algorithm and justifies the reduced training time observed in the
experiments. This is discussed in more detail in Section 2 of [45].

5.4 Competitive MNIST rot experiments

At last, we try to replicate and improve the current state-of-the-art results on
MNIST rot. The current best method from [45] utilizes a C16 equivariant group
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convolutional network. To prevent aliasing issues when rotating the filters, the
authors parametrize the filters in terms of a harmonic angular basis, guarantee-
ing steerability. The resulting steerable basis can be related to our kernel ba-
sis associate with the regular representation of C16 by a simple change of basis.

model group representation test error (%)

1 [12] C4 regular/scalar 3.21 ± 0.0012

2 [12] C4 regular 2.28 ± 0.0004

3 [48] SO(2) irreducible 1.69
4 [28] - - 1.2
5 [30] C17 regular/vector 1.09
6 Ours C16 regular 0.716 ± 0.028

7 [45] C16 regular 0.714 ± 0.022

8 Ours C16 quotient 0.705 ± 0.025

9 Ours D16|5C16 regular 0.682 ± 0.022

Tab. 5.3.: Competitive experiments and current leader-
board on MNIST rot.

This allows us to easily replicate
this model. The architecture is
very similar to the one used in
the benchmark experiments in
Sec. 5.1 but uses larger filters,
wider layers and a deeper fully
connected classifier. The details
of the model can be found in
Tab. E.2. In Tab. 5.3, we re-
port the current leader-board
on MNIST rot. In row 6, we
successfully reproduce the re-
sults from [45]. To improve this
model, we experiment with quotient representations and with restriction. In row
8, we employ a mixture of quotient fields instead of using pure regular features, as
done in Sec. 5.1. This change slightly increases the test accuracy. The introduction
of D16-equivariance with restriction to C16 after the fifth convolution yields a more
substantial improvement and defines a new state-of-the-art in row 9.

5.5 CIFAR

As discussed in Sec. 3.7, natural images are commonly characterized by attributes
that are invariant to global translations and reflections. In this section and the
next one, we experimentally validate our hypothesis that equivariance to local
symmetries can be a useful prior for computer vision models when working with
natural images.

We first experiment with the CIFAR-10 and CIFAR-100 datasets. We consider
WideResNet [49] as a baseline since it is a popular image-classification model
and, at the time of writing, one the simplest, yet best performing architectures on
these datasets. In particular, we use the WideResnet 28/10 version, which has 28
convolution layers and a widening factor of 10 (see [49] for more details). Therefore,
we design a number of DN and CN -equivariant variants of WideResNet using our
steerable kernels. All the results are reported in Tab. 5.4.

The usual WideResNet architecture is composed of three main blocks, separated by
down-sampling layers (actually, strided convolutions), and a final global average
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model groups / citation AutAugment [14] CIFAR-10 CIFAR-100

wrn28/10 [49] 7 3.87 18.80
wrn28/10 D1 D1 D1 7 3.36 ± 0.08 17.97 ± 0.11
wrn28/10* D8 D4 D1 7 3.28 ± 0.10 17.42 ± 0.33
wrn28/10 C8 C4 C1 7 3.20 ± 0.04 16.47 ± 0.22
wrn28/10 D8 D4 D1 7 3.13 ± 0.17 16.76 ± 0.40
wrn28/10 D8 D4 D4 7 2.91 ± 0.13 16.22 ± 0.31

wrn28/10 [14] 3 2.6 ± 0.1 17.1 ± 0.3
wrn28/10* D8 D4 D1 3 2.39 ± 0.11 15.55 ± 0.13
wrn28/10 D8 D4 D1 3 2.05 ± 0.03 14.30 ± 0.09

Tab. 5.4.: Test errors on CIFAR-10 and CIFAR-100.
The second column indicates the equivariance group of each of the three main
blocks of WideRestNet.
"*" specifies the equivariant model has the same size (number of channels) of the
original conventional CNN, i.e. the width has not been scaled up to match the
number of parameters.

pooling followed by a linear classifier. Note that each of the blocks works at a
different resolution of the image. We leverage this structural configuration in our
equivariant design by choosing different symmetries in each block. Group restriction
is performed before the first strided convolution at the beginning of each block.
The second column in Tab. 5.4 shows the group chosen in the three blocks for our
equivariant models or the source of the test errors reported for the conventional
models.

Because of their superior performance in the MNIST experiments, in all our archi-
tectures, we utilize only regular features in the inner layers. In order to produce
invariant features for the final linear classifier, the last convolution layer outputs
only trivial (i.e., invariant) features (conv2triv in Sec. 5.1).

To ensure a fair comparison with conventional CNNs, as before, we adapt the
equivariant model’s width to maintain the number of parameters in each layer
approximatively constant. As a result, models that are equivariant to larger groups
are also wider and, therefore, computationally more expensive. For this reason, we
also compare with thinner equivariant models, denoted with a *, where the widths
of the layers have not been scaled. These models have similar computational costs
of the original WideResNet.

Furthermore, when considering N = 8 rotations, we use 5× 5 filters instead of the
usual 3x3. This helps reduce the discretization artifacts produced by rotating a 3× 3
filter by 45 degrees and allows us to sample higher frequencies. We used the same
training procedure in [49]; see Appendix E.3 for more details. We emphasize that
no further hyperparameter tuning was performed.
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The D1 D1 D1 model is invariant to global vertical reflections. Its superior perfor-
mance over the conventional baseline supports our assumption that natural images
are globally symmetric to reflections. On the other hand, consider the C8 C4 C1

model. While it incorporates only (local) rotation but not reflection equivariance, it
outperforms the last reflection equivariant model. This encouraging result suggests
that exploiting the local rotational symmetries can be beneficial. Therefore, we
combine these two orthogonal designs in the D8 D4 D1 model. We find that this
architecture improves over both previous ones on CIFAR-10 but, surprisingly, the
C8 C4 C1 model is still marginally better on CIFAR-100. We hypothesize this might
be a consequence of the higher dimensionality of DN feature fields with respect to
the CN ones, which consequently reduces the number of independent fields, even
when the width of the model is scaled up. The highest accuracies are found using
D8 D4 D4-equivariance. This model is also equivariant to global π2 rotations, which
means that rotational symmetries tend to appear also a larger scale. This is consistent
with the results found in [12]. It is particularly interesting that even the smaller
wrn28/10* D8 D4 D1 model largely outperforms the conventional baseline while
maintaining approximatively the same computational cost.

Finally, we study the effect of equivariance in a context where a strong data-
augmentation strategy already yields considerable gains. To do this, we re-train both
D8 D4 D1 models using the AutoAugment (AA) policy from [14]. Like in the previous
experiments, both the scaled-up architecture and the one with the original width
achieve significantly better results than the conventional baseline.

5.6 STL-10

Although they are common datasets for evaluating deep learning models, CIFAR-10
and CIFAR-100 only include low-resolution images. To verify if our hypotheses hold
in more general settings and if our observations generalize to high-resolution images,
we repeat similar experiments on the STL-10 dataset [7].

model groups / citations #params test error (%)

wrn16/8 [16] 11M 12.74±0.23

wrn16/8* D1 D1 D1 5M 11.05±0.45

wrn16/8 D1 D1 D1 10M 11.17±0.60

wrn16/8* D8 D4 D1 4.2M 10.57±0.70

wrn16/8 D8 D4 D1 12M 9.80±0.40

Tab. 5.5.: Test errors of different equivariant models on
the STL-10 dataset. "*" indicates that the equiv-
ariant model has the same size (number of
channels) of the original conventional CNN.

STL-10 contains 5000 labeled
training images and 8000
test images, plus 100.000
unlabeled images. All im-
ages have 96 × 96 resolu-
tions. This dataset was ini-
tially designed to evaluate
semi-supervised learning al-
gorithms and, therefore, con-
tains mostly unlabeled im-
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ages. However, its labeled training images are also often used to study supervised
methods in low data regime [16]. Here, we replicate the experiments in [16], where
the authors train a WideResNet 16/8 on STL-10 using CutOut augmentation. At the
time of writing, this model holds the state-of-the-art on STL-10 among the methods
using supervised learning. We adapt the conventional WideResNet architecture as
done in the previous section on the CIFAR experiments. Again, we only replace con-
ventional convolution layers with our DN -steerable convolution, but we use the same
training procedure and do not perform further hyperparameters tuning. In Tab. 5.5,
we experiment with four variants of WideResNet. We test a reflection equivariant
model (D1 D1 D1) and a locally rotation- and globally reflection- equivariant model
(D8 D4 D1). In both cases, we consider both a scaled-up architecture, which has the
same number of parameters but a larger number of channels and a smaller version
(indicated by *) with the same size of the original WideResNet.
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Fig. 5.4.: Data ablation study on STL-10. The equivariant
models yield significantly improved results on all
dataset sizes.

All four equivariant models
achieve consistently higher
accuracies than the conven-
tional baseline. As one
could expect, the scaled-
up D8 D4 D1 model outper-
forms the corresponding
small architecture (marked
with *). However, we point
out that the largest gain is
accomplished by the small-
est model, i.e., by sim-
ply enforcing equivariance,
while the improvement ob-
tained by further increas-
ing the width of the model
is minor. Interestingly, the
small D8 D4 D1 model out-
performs even the wider

D1 D1 D1 model, reinforcing again the idea that using higher levels of equivari-
ance is beneficial. Additionally, with respect to the experiments in Sec. 5.5 on the
CIFAR datasets, we observe a more substantial boost in performance on STL-10
when we introduce rotation equivariance. This result is probably a consequence of
the higher resolution of the images, which favor the presence of more local patterns
at more distinct orientations. Finally, we perform a simple data ablation study to
verify the data efficiency of equivariance. In Fig. 5.4, we report the test errors of
the two D8 D4 D1 models and the conventional baseline trained on different subsets
of the training set. These experiments show that the gain obtained from equivari-
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ance increases on smaller datasets. For mode details on the training setting, see
Appendix E.4.

5.7 Discussion of the Results

In our experiment, we first extensively compared a large number of equivariant
networks designs on variants of the MNIST dataset and established the higher
performance of those based on regular feature fields, i.e. group convolution based ar-
chitectures. We also found improved results by leveraging local symmetries through
group restriction. Successively, with these insights, we adapted well established
conventional CNN architectures using our steerable convolution layers and evaluated
them on three datasets: CIFAR-10, CIFAR-100 and STL-10. Even when steerable
convolution was used as a simple drop in replacement for the conventional one and
no hyper-parameters tuning was performed, all the models yielded considerable
gains in accuracy with respect to the baselines. This behavior was observed in
different settings, both with low and high resolution images and even in combination
with powerful data augmentation policies.
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6Conclusion

„The worst thing you can do is to completely solve
a problem.

— Dan Kleitman

To build rotation- and reflection-equivariance inside deep learning models, many
recent works have proposed alternative architecture designs. In this manuscript,
we described a general framework for E(2) equivariance based on steerable CNNs,
unifying most of the previously existing methods.

Reinterpreting these models from a representation-theoretic point of view, we relate
many design choices solely to the choice of group representations and non-linearities
in the intermediate layers of the networks. Any linear equivariant operation needs
to satisfy a precise constraint dictated by its input and output representations. By
analytically solving the constraint defined on the convolution kernels of a steerable
CNN for any combination of representations of O(2) (or subgroups), we could
replicate many previously proposed models and design entirely new ones. Therefore,
we perform an extensive experimental study to compare them. We then introduced
group restriction as a means to control each layer’s equivariance in terms of the
scale of its field of view. Finally, we validated our model design on three natural
images datasets, namely CIFAR-10, CIFAR-100 and STL-10. By only replacing the
conventional convolution in state-of-the-art deep learning architectures with our
steerable convolution, we find considerable gains in performance on all datasets,
even without further hyper-parameters tuning.

From a computational cost perspective, the construction of the kernel introduces a
small overhead during training. However, during evaluation, the kernels do not need
to be updated and, therefore, can be computed once and reused at each forward
pass. Thus, once trained, a steerable CNN can be converted into a conventional CNN
of the same width with no additional cost. However, thanks to the stronger weight
sharing, an equivariant design often benefits from wider architectures, which match
the number of parameters of a corresponding conventional CNN. Nevertheless, in
our experiments, we find that this adjustment is not necessary to observe improved
performance with respect to conventional CNNs. Our experiments also show that
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steerable CNNs enjoy a faster convergence, suggesting that it is probably possible to
train them using fewer resources.

In conclusion, we expect equivariance to eventually become the preferred network
design when data shows symmetries on a global scale, e.g., in biomedical imaging,
or even only locally, in light of our results on natural images. Thus, we hope our
e2cnn library1 will facilitate the adoption of equivariant networks in the scientific
community and encourage further research.

6.1 Future Work

Despite the large experimental study performed in this work, further research is still
necessary to explore the vast space of architectures described by the steerable CNN
framework. Indeed, although regular fields are generally the best choice, they also
have the highest memory and computational cost. This makes them less suitable
when using large groups but suggests a potential for lower dimensional, although
less expressive representations. In particular, the optimal combination of field types
describing a model’s features is probably task-specific. For instance, ignoring non-
linearities and, therefore, changes of bases for simplicity, the multiplicity of O(2)’s
irreps in the field type is directly related to frequencies of the patterns that the fea-
tures can encode. When working with datasets containing low resolution or smooth
images, low-frequency feature types may be sufficient; conversely, high-resolution
data may require high-frequency features to ensure the model is sufficiently expres-
sive. An automated method to search this space, avoiding combinatorial explosion,
might be necessary.

Finally, because of the increasing interest in 3D applications within the Computer
Vision community, a prominent direction of future research is extending the current
framework to the group of 3D isometries E(3) and its subgroups.

1https://github.com/QUVA-Lab/e2cnn
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AEquivariant non-linearities in
E(2)-steerable CNNs

We have already proved the sufficiency of H-steerable convolution for G = (R2,+)o
H equivariance in Sec. 3.3. In this section, we will show the equivariance of the
non-linear layers used in the neural networks.

Any non-linear layer Σ considered in this work consists of a non-linear function
σ : Rcin → Rcout which is applied on each feature vector f(x) ∈ Rcin of the input
feature field f : R2 → Rcin individually. In the rest of this section, we will denote the
whole layer as Σ and its application on an individual vector as σ, i.e.:

Σ : f 7→ Σ(f), [Σ(f)] (x) := σ
(
f(x)

)
.

We require Σ to be equivariant with respect to its input and output field types’
transformations:

Σ(Ind ρin(g) f) = Ind ρout(g) Σ(f) ∀f, ∀g ∈ G

By expanding the action of the induced representations as defined in Eq. 3.8, one
obtains the following equivalent conditions:

Σ(Ind ρin(g) f) = Ind ρout(g) Σ(f) ∀f, ∀g ∈ G

⇐⇒ [Σ(Ind ρin(g) f)] (x) = [Ind ρout(g) Σ(f)] (x) ∀f, ∀x ∈ R2, ∀g ∈ G

using the decomposition g = th ∈ G = (R2,+)oH:

⇐⇒ σ
(
ρin(h) f(h−1(x− t)

)
= ρout(h) σ

(
f(h−1(x− t))

)
∀f, ∀x ∈ R2, ∀th ∈ G

⇐⇒ σ (ρin(h) v) = ρout(h) σ (v) ∀v ∈ Rcin , ∀h ∈ H

that is, σ needs to be equivariant with respect to the H-representations ρin and
ρout.

Therefore, in order to prove the equivariance of a non-linear layer Σ to G, it is
necessary and sufficient to show the equivariance of σ to H. As described in Sec. 3.2,
a feature field f : R2 → Rcin can be composed from multiple sub-fields {fi : R2 →
Rci}i (with cin =

∑
i ci) through the direct sum, i.e. f =

⊕
i fi. Analogously, the field
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type ρin of f is defined as the direct sum ρin =
⊕
i ρ
i
in, where ρiin is the field type

of the i-th field fi. In general, the function σ applies an independent (potentially
different) non-linearity σi to each sub-field fi. With an abuse of notation, we write
σ =

⊕
i σi to indicate the function

σ : f =
⊕
i

fi 7→ σ(f) = σ

(⊕
i

fi

)
:=
⊕
i

σi(fi) .

Then, if every σi is equivariant with respect to its own input and output types’
representations ρiin and ρiout, then σ is equivariant with respect to ρin and ρout. This
can be quickly verified, as ∀h ∈ H and ∀f(x) ∈ Rcin:

σ(ρin(h)f(x)) = σ(
⊕
i

ρiin(h)fi(x))

=
⊕
i

σi(ρiin(h)fi(x))

=
⊕
i

ρiout(h)σi(fi(x))

= ρout(h)
⊕
i

σi(fi(x))

= ρout(h)σ(f(x))

In the rest of this section, we prove the equivariance of different non-linearities σ
with respect to different H-representations. For simplicity, we will just consider the
non-linearity applied on a generic vector v instead of a feature vector f(x) defined
by a specific field f evaluated on a point x.

A.1 Norm non-linearities for unitary
representations

A unitary representation ρ : H → Rc×c is a representation which evaluates to unitary
matrices, that is they preserve the norm of the vectors:

||ρ(h)v||2 = ||v||2 ∀v ∈ Rc, ∀h ∈ H .

As introduced in Sec. 3.6, a norm non-linearity σ has form

σ(v) := η (||v||2) v

||v||2
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where η : R≥0 → R≥0 is a non-linear function1 such that η(0) = 0 which is applied
on the norm of the feature vector. Then, because σ leaves the orientation of its input
unchanged, it commutes with a unitary representation ρ, indeed ∀h ∈ H:

σ(ρ(h) v) = η (||ρ(h)v||2) ρ(h)v
||ρ(h) v||2

= η (||v||2) ρ(h) v
||v||2

= ρ(h) σ (v)

A.2 Point-wise nonlinearities for regular and
quotient representations

The action of regular representations and, more generally, quotient representations
is defined via the group composition as

ρ
H/K
quot (h̃)ehK := eh̃hK

where the vectors {ehK |hK ∈ H/K}, indexed by the cosets in H/K, form a basis for
the representation space of ρH/K . Therefore, given a vector v =

∑
hK vhKehK ex-

pressed in this basis, these representations act by permuting its coefficients {vhK}hK .

A point-wise non-linearity σ independently applies the same non-linear function
ν : R→ R on each entry of an input vector, i.e.:

σ : v =
∑
i

viei 7→ σ(v) :=
∑
i

ν(vi)ei .

Then, any regular, quotient or, more generally, permutation representation2 ρ com-
mutes with any point-wise σ. Indeed, by denoting with eρ(h)[i] := ρ(h)ei:

σ(ρ(h) v) = σ(ρ(h)
∑
i

viei) = σ(
∑
i

viρ(h) ei)

= σ(
∑
i

vieρ(h)[i])

= σ(
∑
i

vρ(h−1)[i]ei)

=
∑
i

ν(vρ(h−1)[i])ei

=
∑
i

ν(vi)ρ(h) ei = ρ(h)
∑
i

ν(vi)ei = ρ(h) σ(v)

1 For stability around the origin, it is preferable to choose a function η s.t. η(x) ≤ x for x close to 0.
2 a representation which evaluates to permutation matrices.
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A.3 Vector-field non-linearities for regular and
standard representations

Each element rp ∈ CN can be identified with a rotation by an angle θp = p2π
N , see

Examples 4 and 8. At the same time, one can identify each entry of a vector v in the
regular representation ρCN

reg with an element rp ∈ CN - and, therefore, with an angle
θp - as v =

∑N−1
p=0 vpep.

Then, a vector-field non-linearity σ : RN → R2 maps an N -dimensional vector
v transforming according to the regular representation ρin = ρCN

reg of CN to a 2-
dimensional vector transforming according to the irreducible representation ρout =
ψCN

1 (see Sec. 2.7.2) as:

σ(v) := max v
(

cos θargmax v

sin θargmax v

)

The equivariance of this operation can be proven as follows. ∀rq ∈ CN :

σ(ρCN
reg(rq) v) = σ(ρCN

reg(rq)
∑
p

vpep)

= σ(
∑
p

vpep+q)

Define p̂ := argmaxp vp. Then, max ρCN
reg(rq) v = vp̂ and argmax ρCN

reg(rq) v = p̂+q.

= vp̂

(
cos θp̂+q
sin θp̂+q

)

= vp̂

(
cos θp̂ + θq

sin θp̂ + θq

)

= vp̂

[
cos (θq) 9 sin (θq)
sin (θq) cos (θq)

](
cos θp̂
sin θp̂

)
= ψCN

1 (rq) σ(v)

A.4 Induced non-linearities

Let K be a subgroup of H and ψin : K → GL(Rdin) and ψout : K → GL(Rdout) two
K-representations. Let also ν : Rdin → Rdout be a non-linearity which is equivariant
to K with respect to ψin and ψout. Assume that ρin = IndHK ψin : H → GL(Rcin) and
ρout = IndHK ψout : H → GL(Rcout), with cin = |H : K|din and cout = |H : K|dout.
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Recall that a vector v ∈ Rcin in the representation space of IndHK ψin can be expressed
as

v =
∑

hK∈H/K
ehK ⊗ vhK

where vhK ∈ Rdin is the component of v in the subspace associated with the coset
hK. See Sec. 2.4. Then, with an abuse of notation, we define the induced non-
linearity σ = IndHK ν which acts by independently applying ν to the components of
each of the |H : K| subspaces:

σ(v) = σ

(∑
hK

ehK ⊗ vhK

)
:=
∑
hK

ehK ⊗ ν(vhK) .

Note that a permutation of the |H : K| subspaces commutes with the application of ν
on each of them individually and ν is assumed to be equivariant to the transformation
of a subspace through ψin and ψout. Therefore, the induced non-linearity σ is
equivariant to H with respect to ρin = IndHK ψin and ρout = IndHK ψout. This can be
formally proven as follows. First of all, recall that, given a section R : H/K → H,
any element h ∈ H can be uniquely written as h = R(hK)k(h) 3. Then, ∀h̃ ∈ H:

σ (Ind ψin(h) v) = σ

(∑
hK

eh̃hK ⊗ ψin

(
k
(
h̃R(hK)

))
vhK

)
=
∑
hK

eh̃hK ⊗ ν
(
ψin

(
k
(
h̃R(hK)

))
vhK

)
=
∑
hK

eh̃hK ⊗ ψout

(
k
(
h̃R(hK)

))
ν (vhK)

= Ind ψout(h) σ (v)

3 The function k here is the equivalent of the function h in Sec. 2.4. Note that here we induce from K
to H, while there we considered induction from H to G. All the notation used here is equivalent to
the one used in Sec. 2.4, except for the fact that all k should be replaced with h while all h should
be replaced with g.
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BSolutions of the kernel constraints
for irreducible representations

In this section we are deriving analytical solutions of the kernel constraints

κij(hx) = ψi(h) κij(x) ψ−1
j (h) ∀h ∈ H, x ∈ R2 (B.1)

for irreducible representations ψi of O(2) and its subgroups. The linearity of the
constraint implies that the solution space of G-steerable kernels forms a linear
subspace of the unrestricted kernel space k ∈ L2

(
R2
)cout×cin

of square integrable
functions k : R2 → Rcout×cin .

Since our numerical implementation is on the real field we are considering real-
valued irreps. It is in general possible to derive all solutions considering complex
valued irreps of H ≤ O(2). While this approach would simplify some steps it comes
with an overhead of relating the final results back to the real field which leads to
further complications, see Appendix B.3. An overview over the real-valued irreps of
H ≤ O(2) and their properties was given in Sec. 2.7.2.

We present the analytical solutions of the irrep kernel constraints for all possible
pairs of irreps in Sec. B.1. Specifically, the solutions for SO(2) are given in Tab. B.1
while the solutions for O(2), ({±1}, ∗), CN and DN are given in Tab. B.2, Tab. B.3,
Tab. B.4 and Tab. B.5, respectively.

Our derivation of the irrep kernel bases is motivated by the observation that the irreps
of O(2) and subgroups are harmonics, that is, they are associated to one particular
angular frequency. This suggests that the kernel constraint in Eq. (B.1) decouples
into simpler constraints on individual Fourier modes. In the derivations, presented
in Sec. B.2, we are therefore defining the kernels in polar coordinates x = x(r, φ)
and expand them in terms of an orthogonal, angular, Fourier-like basis. A projection
on this orthogonal basis then yields constraints on the expansion coefficients. Only
specific coefficients are allowed to be non-zero; these coefficients parameterize the
complete space of G-steerable kernels satisfying the irrep constraint (B.1). The
completeness of the solution follows from the completeness of the orthogonal
basis.
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We start with deriving the bases for the simplest cases SO(2) and ({±1}, ∗) in
sections B.2.2 and B.2.3. The H-steerable kernel basis for O(2) forms a subspace
of the kernel basis for SO(2) such that it can be easily derived from this solution
by adding the additional constraint coming from the reflectional symmetries in
({±1}, ∗) ∼= O(2)/ SO(2). This additional constraint is imposed in Sec. B.2.4. Since
CN is a subgroup of discrete rotations in SO(2) their derivation is mostly similar.
However, the discreteness of rotation angles leads toN systems of linear congruences
modulo N in the final step. This system of equations is solved in Sec. B.2.5. Similar
to how we derived the kernel basis for O(2) from SO(2), we derive the basis for DN
from CN by adding reflectional constraints from ({±1}, ∗) ∼= DN /CN in Sec. B.2.6.
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B.1 Analytical solutions of the irrep kernel
constraints

Special Orthogonal Group SO(2)

ψm ψn ψ0 ψn, n ∈ N+

ψ0

(
1
) (

cos(nφ) sin(nφ)
)
,

(
9 sin(nφ) cos(nφ)

)

ψm,
m ∈ N+

(
cos(mφ)
sin(mφ)

)
,(

9 sin(mφ)
cos(mφ)

)
(

cos
(
(m−n)φ

)
9sin

(
(m−n)φ

)
sin
(
(m−n)φ

)
cos
(
(m−n)φ

)),(9 sin
(
(m−n)φ

)
9cos

(
(m−n)φ

)
cos
(
(m−n)φ

)
9sin

(
(m−n)φ

))(
cos
(
(m+n)φ

)
sin
(
(m+n)φ

)
sin
(
(m+n)φ

)
9cos

(
(m+n)φ

)),(9 sin
(
(m+n)φ

)
cos
(
(m+n)φ

)
cos
(
(m+n)φ

)
sin
(
(m+n)φ

))

Tab. B.1.: Bases for the angular parts of SO(2)-steerable kernels satisfying the irrep con-
straint (3.12) for different pairs of input and output field irreps ψn and ψm. The
different types of irreps are explained in Sec. 2.7.2.

Orthogonal Group O(2)

ψi,m ψj,n ψ0,0 ψ1,0 ψ1,n, n ∈ N+

ψ0,0

(
1
)

∅
(
9 sin(nφ) cos(nφ)

)
ψ1,0 ∅

(
1
) (

cos(nφ) sin(nφ)
)

ψ1,m,
m ∈ N+

9sin(mφ)

cos(mφ)


cos(mφ)

sin(mφ)


cos

(
(m9n)φ

)
9sin

(
(m9n)φ

)
sin
(
(m9n)φ

)
cos
(
(m9n)φ

)
,
cos

(
(m+n)φ

)
sin
(
(m+n)φ

)
sin
(
(m+n)φ

)
9cos

(
(m+n)φ

)


Tab. B.2.: Bases for the angular parts of O(2)-steerable kernels satisfying the irrep con-
straint (3.12) for different pairs of input and output field irreps ψj,n and ψi,m.
The different types of irreps are explained in Sec. 2.7.2.

Reflection group ({±1}, ∗)

ψi ψj ψ0 ψ1

ψ0
[

cos
(
µ(φ− β)

)] [
sin
(
µ(φ− β)

)]
ψ1

[
sin
(
µ(φ− β)

)] [
cos

(
µ(φ− β)

)]
Tab. B.3.: Bases for the angular parts of ({±1}, ∗)-steerable kernels satisfying the irrep

constraint (3.12) for different pairs of input and output field irreps ψj and ψi
for i, j ∈ {0, 1}. The different types of irreps are explained in Sec. 2.7.2. The
reflection f is defined along the axis identified by the angle β wrt the x-axis.
Note that these bases are a special case of those in Tab. B.5 since ({±1}, ∗) ∼= D1.
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Cyclic groups CN

ψm ψn ψ0 ψN/2 (if N even) ψn with n ∈ N+ and 1 ≤ n < N/2

ψ0

[
cos(t̂Nφ)

]
,[

sin(t̂Nφ)
]

[
cos

((
t̂+ 1

2

)
Nφ

) ]
,[

sin
((
t̂+ 1

2

)
Nφ

) ] [
9 sin((n+ tN)φ) cos((n+ tN)φ)

]
,[

cos((n+ tN)φ) sin((n+ tN)φ)
]

ψN/2 (N even)

[
cos

((
t̂+ 1

2

)
Nφ

) ]
,[

sin
((
t̂+ 1

2

)
Nφ

) ] [
cos(t̂Nφ)

]
,[

sin(t̂Nφ)
]

[
9 sin

((
n+

(
t+ 1

2

)
N
)
φ
)

cos
((
n+

(
t+ 1

2

)
N
)
φ
) ]

,[
cos

((
n+

(
t+ 1

2

)
N
)
φ
)

sin
((
n+

(
t+ 1

2

)
N
)
φ
) ]

ψm,
m ∈ N+

1 ≤ m < N/2

[
9sin((m+ tN)φ)
cos((m+ tN)φ)

]
,[

cos((m+ tN)φ)
sin((m+ tN)φ)

]
[
9sin

((
m+

(
t+ 1

2

)
N
)
φ
)

cos
((
m+

(
t+ 1

2

)
N
)
φ
)] ,

[
cos

((
m+

(
t+ 1

2

)
N
)
φ
)

sin
((
m+

(
t+ 1

2

)
N
)
φ
)]

[
cos
(
(m−n+ tN)φ

)
9sin

(
(m−n+ tN)φ

)
sin
(
(m−n+ tN)φ

)
cos
(
(m−n+ tN)φ

)], [9 sin
(
(m−n+ tN)φ

)
9cos

(
(m−n+ tN)φ

)
cos
(
(m−n+ tN)φ

)
9sin

(
(m−n+ tN)φ

)],[
cos
(
(m+n+ tN)φ

)
sin
(
(m+n+ tN)φ

)
sin
(
(m+n+ tN)φ

)
9cos

(
(m+n+ tN)φ

)], [9 sin
(
(m+n+ tN)φ

)
cos
(
(m+n+ tN)φ

)
cos
(
(m+n+ tN)φ

)
sin
(
(m+n+ tN)φ

)]

Tab. B.4.: Bases for the angular parts of CN -steerable kernels for different pairs of input and output fields irreps ψn and ψm. The full basis is
found by instantiating these solutions for each t∈Z or t̂ ∈ N. The different types of irreps are explained in Sec. 2.7.2.
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Dihedral groups DN

ψi,m
ψj,n ψ0,0 ψ1,0 ψ0,N/2 (if N even) ψ1,N/2 (if N even) ψ1,n with n ∈ N+ and 1 ≤ n < N/2

ψ0,0
[
cos(t̂Nφ)

] [
sin(t̂Nφ)

] [
cos

((
t̂+ 1

2

)
Nφ

) ] [
sin
((
t̂+ 1

2

)
Nφ

) ] [
9 sin((n+ tN)φ) cos((n+ tN)φ)

]
ψ1,0

[
sin(t̂Nφ)

] [
cos(t̂Nφ)

] [
sin
((
t̂+ 1

2

)
Nφ

) ] [
cos

((
t̂+ 1

2

)
Nφ

) ] [
cos ((n+ tN)φ) sin ((n+ tN)φ)

]
ψ0,N/2 (N even)

[
cos

((
t̂+ 1

2

)
Nφ

) ] [
sin
((
t̂+ 1

2

)
Nφ

) ] [
cos(t̂Nφ)

] [
sin(t̂Nφ)

] [
9 sin

((
n+

(
t+ 1

2

)
N
)
φ
)

cos
((
n+

(
t+ 1

2

)
N
)
φ
) ]

ψ1,N/2 (N even)
[

sin
((
t̂+ 1

2

)
Nφ

) ] [
cos

((
t̂+ 1

2

)
Nφ

) ] [
sin(t̂Nφ)

] [
cos(t̂Nφ)

] [
cos
((
n+

(
t+ 1

2

)
N
)
φ
)

sin
((
n+

(
t+ 1

2

)
N
)
φ
) ]

ψ1,m,
m ∈ N+

1 ≤ m < N/2

[
9sin((m+ tN)φ)

cos((m+ tN)φ)

] [
cos((m+ tN)φ)

sin((m+ tN)φ)

] [
9sin

((
m+

(
t+ 1

2

)
N
)
φ
)

cos
((
m+

(
t+ 1

2

)
N
)
φ
)] [

cos
((
m+

(
t+ 1

2

)
N
)
φ
)

sin
((
m+

(
t+ 1

2

)
N
)
φ
)]

[
cos
(
(m−n+ tN)φ

)
9sin

(
(m−n+ tN)φ

)
sin
(
(m−n+ tN)φ

)
cos
(
(m−n+ tN)φ

)],[
cos
(
(m+n+ tN)φ

)
sin
(
(m+n+ tN)φ

)
sin
(
(m+n+ tN)φ

)
9cos

(
(m+n+ tN)φ

)]

Tab. B.5.: Bases for the angular parts of DN -steerable kernels for different pairs of input and output fields irreps ψj,n and ψi,m. The full basis
is found by instantiating these solutions for each t∈Z or t̂∈N. The different types of irreps are explained in Sec. 2.7.2. Here, we
assumed the reflection f to be defined along the horizontal x-axis (β = 0). For reflections along different axes (identified by an
angle β 6= 0), one can substitute φ with φ− β.
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B.2 Derivations of the kernel constraints

Here we solve the kernel constraints for the irreducible representations of H ≤
O(2). Since the irreps of H are either 1- or 2-dimensional, we distinguish between
mappings between 2-dimensional irreps, mappings from 2- to 1-dimensional and 1-
to 2-dimensional irreps and mappings between 1-dimensional irreps. We are first
exclusively considering positive radial parts r > 0 in the following sections. The
constraint at the origin r = 0 requires some additional considerations which we
postpone to Appendix B.2.6.1.

B.2.1 Conventions and Basic properties

In our derivations, we adopt the same notation introduced in Sec. 2.7.1. Moreover,
these properties will be useful later:

ψ(θ)ξ(s) = ξ(s)ψ(sθ) (B.2)

ξ(s)−1 = ξ(s)T = ξ(s) (B.3)

ψ(θ)−1 = ψ(θ)T = ψ(−θ) (B.4)

ψ(θ1)ψ(θ2) = ψ(θ1 + θ2) = ψ(θ2)ψ(θ1) (B.5)

Tr(ψ(θ)ξ(−1)) = Tr
[
cos (θ) sin (θ)
sin (θ) 9 cos (θ)

]
= 0 (B.6)

Tr(ψ(θ)) = Tr
[
cos (θ) 9 sin (θ)
sin (θ) cos (θ)

]
= 2 cos(θ) (B.7)

w1 cos(α) + w2 sin(α) = w1 cos(β) + w2 sin(β) ∀w1, w2 ∈ R
⇔ ∃t ∈ Z s.t. α = β + 2tπ (B.8)

B.2.2 Special Orthogonal Group SO(2)

2-dimensional irreps:

We first consider the case of 2-dimensional irreps both in the input and in output,

that is, ρout = ψ
SO(2)
m and ρin = ψ

SO(2)
n , where ψSO(2)

k (θ) =
[
cos (kθ) 9 sin (kθ)
sin (kθ) cos (kθ)

]
.

This means that the kernel has the form κij : R2 → R2×2. To reduce clutter we will
from now on suppress the indices ij corresponding to the input and output irreps in
the input and output fields.
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We expand each entry of the kernel κ in terms of an (angular) Fourier series1

κ(r, φ) =
∞∑
µ=0

A00,µ(r)
[
cos(µφ) 0

0 0

]
+ B00,µ(r)

[
sin(µφ) 0

0 0

]

+ A01,µ(r)
[
0 cos(µφ)
0 0

]
+ B01,µ(r)

[
0 sin(µφ)
0 0

]

+ A10,µ(r)
[

0 0
cos(µφ) 0

]
+ B10,µ(r)

[
0 0

sin(µφ) 0

]

+ A11,µ(r)
[
0 0
0 cos(µφ)

]
+ B11,µ(r)

[
0 0
0 sin(µφ)

]

and, for convenience, perform a change of basis to a different, non-sparse, orthogonal
basis

κ(r, φ) =
∞∑
µ=0

w0,0,µ(r)
[
cos (µφ) 9 sin (µφ)
sin (µφ) cos (µφ)

]
+ w0,1,µ(r)

[
cos

(
µφ+ π

2
)
9 sin

(
µφ+ π

2
)

sin
(
µφ+ π

2
)

cos
(
µφ+ π

2
)]

+ w1,0,µ(r)
[
cos (µφ) sin (µφ)
sin (µφ) 9 cos (µφ)

]
+ w1,1,µ(r)

[
cos

(
µφ+ π

2
)

sin
(
µφ+ π

2
)

sin
(
µφ+ π

2
)
9 cos

(
µφ+ π

2
)]

+ w2,0,µ(r)
[
cos (9µφ) 9 sin (9µφ)
sin (9µφ) cos (9µφ)

]
+ w2,1,µ(r)

[
cos

(
9µφ+ π

2
)
9 sin

(
9µφ+ π

2
)

sin
(
9µφ+ π

2
)

cos
(
9µφ+ π

2
)]

+ w3,0,µ(r)
[
cos (9µφ) sin (9µφ)
sin (9µφ) 9 cos (9µφ)

]
+ w3,1,µ(r)

[
cos

(
9µφ+ π

2
)

sin
(
9µφ+ π

2
)

sin
(
9µφ+ π

2
)
9 cos

(
9µφ+ π

2
)].

The last four matrices are equal to the first four, except for their opposite frequency.
Moreover, the second matrices of each row are equal to the first matrices, with a
phase shift of π

2 added. Therefore, we can as well write:

κ(r,φ) =
∞∑

µ=9∞

∑
γ∈{0,π2 }

w0,γ,µ(r)
[
cos (µφ+γ) 9 sin (µφ+γ)
sin (µφ+γ) cos (µφ+γ)

]
+w1,γ,µ(r)

[
cos (µφ+γ) sin (µφ+γ)
sin (µφ+γ) 9 cos (µφ+γ)

]

Notice that the first matrix evaluates to ψ(µφ+ γ)ξ(1) = ψ(µφ+ γ) while the second
evaluates to ψ(µφ+ γ)ξ(−1). Hence, for s ∈ {±1} we can compactly write:

κ(r, φ) =
∞∑

µ=−∞

∑
γ∈{0,π2 }

∑
s∈{±1}

ws,γ,µ(r)ψ(µφ+ γ)ξ(s)

1 For brevity, we suppress that frequency 0 is associated to only half the number of basis elements
which does not affect the validity of the derivation.
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As already shown in Sec. 3.5, we can w.l.o.g. consider the kernels as being defined
only on the angular component φ ∈ [0, 2π) = S1 by solving only for a specific radial
component r. As a result, we consider the basis{

bµ,γ,s(φ) = ψ(µφ+ γ)ξ(s)
∣∣∣∣ µ ∈ Z, γ ∈ {0, π2

}
, s ∈ ({±1}, ∗)

}
(B.9)

of the unrestricted kernel space which we will constrain in the following by demand-
ing

κ(φ+ θ) = ψSO(2)
m (rθ)κ(φ)ψSO(2)

n (rθ)−1 ∀φ, θ ∈ [0, 2π), (B.10)

where we dropped the unrestricted radial part.

We solve for a basis of the subspace satisfying this constraint by projecting both sides
on the basis elements defined above. The inner product on L2(S1)2×2 is hereby
defined as

〈k1, k2〉 = 1
4π

∫
dφ〈k1(φ), k2(φ)〉F = 1

4π

∫
dφ Tr

(
k1(φ)Tk2(φ)

)
,

where 〈·, ·〉F denotes the Frobenius inner product between 2 matrices.

First consider the projection of the lhs of the kernel constraint (B.10) on a generic
basis element bµ′,γ′,s′(φ) = ψ(µ′φ+γ′)ξ(s′). Defining the operatorRθ by (Rθκ) (φ) :=
κ(φ+ θ), the projection gives:

〈bµ′,γ′,s′ , Rθκ〉 = 1
4π

∫
dφ Tr

(
bµ′,γ′,s′(φ)T (Rθκ) (φ)

)
= 1

4π

∫
dφ Tr

(
bµ′,γ′,s′(φ)Tκ(φ+ θ)

)
.

By expanding the kernel in the linear combination of the basis we further obtain

= 1
4π

∫
dφ Tr

(
bµ′,γ′,s′(φ)T

(∑
µ

∑
γ

∑
s

ws,γ,µψ (µ(φ+ θ) + γ) ξ(s)
))

,

which, observing that the trace, sums and integral commute, results in:

= 1
4π
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(∫

dφ bµ′,γ′,s′(φ)Tψ (µ(φ+ θ) + γ) ξ(s)
)

= 1
4π
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(∫

dφ
(
ψ(µ′φ+ γ′)ξ(s′)

)T
ψ (µ(φ+ θ) + γ) ξ(s)

)

= 1
4π
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(∫

dφ ξ(s′)Tψ(µ′φ+ γ′)Tψ (µ(φ+ θ) + γ) ξ(s)
)

104 Chapter B Solutions of the kernel constraints for irreducible representations



Using the properties in Eq. (B.3) and (B.4) then yields:

= 1
4π
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(∫

dφ ξ(s′)ψ(−µ′φ− γ′)ψ (µ(φ+ θ) + γ) ξ(s)
)

= 1
2
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(
ξ(s′)ψ(γ − γ′)

( 1
2π

∫
dφ ψ((µ− µ′)φ)

)
ψ(µθ)ξ(s)

)

In the integral, each cell of the matrix ψ((µ− µ′)φ) contains either a sine or cosine.
As a result, if µ − µ′ 6= 0, all these integrals evaluate to 0. Otherwise, the cosines
on the diagonal evaluate to 1, while the sines integrate to 0. The whole integral
evaluates to δµ,µ′ id2×2, such that

= 1
2
∑
γ

∑
s

ws,γ,µ′ Tr
(
ξ(s′)ψ(γ − γ′)ψ(µ′θ)ξ(s)

)
,

which, using the property in Eq. (B.2) leads to

= 1
2
∑
γ

∑
s

ws,γ,µ′ Tr
(
ψ(s′(γ − γ′ + µ′θ))ξ(s′ ∗ s)

)
.

Recall the propetries of the trace in Eq. (B.6), (B.7). If s′ ∗ s = −1, i.e. s′ 6= s, the
matrix has a trace of 0:

= 1
2
∑
γ

∑
s

ws,γ,µ′δs′,s2 cos(s′(γ − γ′ + µ′θ))

Since cos(−α) = cos(α) and s′ ∈ {±1}:

= 1
2
∑
γ

∑
s

ws,γ,µ′δs′,s2 cos(γ − γ′ + µ′θ)

=
∑
γ

ws′,γ,µ′ cos((γ − γ′) + µ′θ)

Next consider the projection of the rhs of Eq. (B.10):

〈bµ′,γ′,s′ , ψSO(2)
m (rθ)κ(·)ψSO(2)

n (rθ)−1〉

= 1
4π

∫
dφ Tr

(
bµ′,γ′,s′(φ)TψSO(2)

m (rθ)κ(φ)ψSO(2)
n (rθ)−1

)
= 1

4π

∫
dφ Tr

(
bµ′,γ′,s′(φ)Tψ(mθ)κ(φ)ψ(−nθ)

)
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An expansion of the kernel in the linear combination of the basis yields:

= 1
4π

∫
dφ Tr

(
bµ′,γ′,s′(φ)Tψ(mθ)

(∑
µ

∑
γ

∑
s

ws,γ,µψ (µφ+ γ) ξ(s)
)
ψ(−nθ)

)

= 1
4π
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(∫

dφ bµ′,γ′,s′(φ)Tψ(mθ)ψ (µφ+ γ) ξ(s)ψ(−nθ)
)

= 1
4π
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(∫

dφ ξ(s′)ψ(−µ′φ− γ′)ψ(mθ)ψ (µφ+ γ) ξ(s)ψ(−nθ)
)

= 1
2
∑
µ

∑
γ

∑
s

ws,γ,µ Tr
(
ξ(s′)ψ(γ 9 γ′)ψ(mθ)

( 1
2π

∫
dφ ψ((µ 9 µ′)φ)

)
ξ(s)ψ(9nθ)

)

Again, the integral evaluates to δµ,µ′ id2×2:

= 1
2
∑
µ

∑
γ

∑
s

ws,γ,µδµ,µ′ Tr
(
ξ(s′)ψ(γ − γ′)ψ(mθ)ξ(s)ψ(−nθ)

)
= 1

2
∑
γ

∑
s

ws,γ,µ′ Tr
(
ξ(s′)ψ(γ − γ′)ψ(mθ)ξ(s)ψ(−nθ)

)
= 1

2
∑
γ

∑
s

ws,γ,µ′ Tr
(
ψ(s′(γ − γ′ +mθ − nsθ))ξ(s′ ∗ s)

)
For the same reason as before, the trace is not zero if and only if s′ = s:

= 1
2
∑
γ

∑
s

ws,γ,µ′δs′,s2 cos(s′(γ − γ′ +mθ − nsθ))

Since cos(−α) = cos(α) and s′ ∈ {±1}:

=
∑
γ

ws′,γ,µ′ cos(γ − γ′ +mθ − ns′θ)

=
∑
γ

ws′,γ,µ′ cos((γ − γ′) + (m− ns′)θ)

Finally, we require the two projections to be equal for all rotations in SO(2), that
is,

∑
γ

ws′,γ,µ′ cos((γ − γ′) + µ′θ) =
∑
γ

ws′,γ,µ′ cos((γ − γ′) + (m− ns′)θ) ∀θ ∈ [0, 2π),

or, explicitly, with γ ∈ {0, π2 } and cos(α+ π
2 ) = − sin(α):

ws′,0,µ′ cos(µ′θ − γ′) − ws′,π2 ,µ′ sin(µ′θ − γ′)

= ws′,0,µ′ cos((m− ns′)θ − γ′)− ws′,π2 ,µ′ sin((m− ns′)θ − γ′) ∀θ ∈ [0, 2π)
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Using the property in Eq. (B.8) then implies that for each θ in [0, 2π) there exists a
t ∈ Z such that:

⇔ µ′θ − γ′ = (m− ns′)θ − γ′ + 2tπ

⇔ (µ′ − (m− ns′))θ = 2tπ (B.11)

Since the constraint needs to hold for any θ ∈ [0, 2π) this results in the condition
µ′ = m− sn′ on the frequencies occurring in the SO(2)-steerable kernel basis. Both
γ and s are left unrestricted such that we end up with the four-dimensional basis

KSO(2)
ψm←ψn =

{
bµ,γ,s(φ) = ψ

(
µφ+ γ

)
ξ(s)

∣∣∣∣ µ = (m 9 sn), γ ∈
{

0, π2

}
, s ∈ {±1}

}

(B.12)

for the angular parts of equivariant kernels for m,n > 0. This basis is explicitly
written out in the lower right cell of Tab. B.1.

1-dimensional irreps:

For the case of 1-dimensional irreps in both the input and output, i.e. ρout = ρin =
ψ

SO(2)
0 the kernel has the form κij : R2 → R1×1. As a scalar function in L2(R2), it

can be expressed by the Fourier decomposition of its angular part:

κ(r, φ) = w0,0 +
∞∑
µ=1

∑
γ∈{0,π2 }

wµ,γ(r) cos(µφ+ γ)

As before, we can w.l.o.g. drop the dependency on the radial part as it is not
restricted by the constraint. We are therefore considering the basis

{
bµ,γ(φ) = cos(µφ+ γ)

∣∣∣∣∣ µ ∈ N, γ ∈
{0} if µ = 0
{0, π/2} otherwise

}
(B.13)

of angular kernels in L2(S1)1×1. The kernel constraint in Eq. (3.12) then requires

κ(φ+ θ) = ψSO(2)
m (rθ)κ(φ)ψSO(2)

n (rθ)−1 ∀θ, φ ∈ [0, 2π)

⇔ κ(φ+ θ) = κ(φ) ∀θ, φ ∈ [0, 2π),

i.e. the kernel has to be invariant to rotations.

Again, we find the space of all solutions by projecting both sides on the basis defined
above. Here, the projection of two kernels is defined through the standard inner
product 〈k1, k2〉 = 1

2π
∫
dφk1(φ)k2(φ) on L2(S1).
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We first consider the projection of the lhs:

〈bµ′,γ′ , Rθκ〉 = 1
2π

∫
dφ bµ′,γ′(φ) (Rθκ) (φ)

= 1
2π

∫
dφ bµ′,γ′(φ)κ(φ+ θ)

As before we expand the kernel in the linear combination of the basis:

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ) cos(µφ+ µθ + γ)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′) cos(µφ+ µθ + γ)

With cos(α) cos(β) = 1
2 (cos(α− β) + cos(α+ β)) this results in:

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ

1
2
(

cos(µ′φ+ γ′ − µφ− µθ − γ)

+ cos(µ′φ+ γ′ + µφ+ µθ + γ)
)

=
∑
µ,γ

wµ,γ
1
2
( 1
2π

∫
dφ cos((µ′ − µ)φ+ (γ′ − γ)− µθ)

+ 1
2π

∫
dφ cos((µ′ + µ)φ+ (γ′ + γ) + µθ)

)
=
∑
µ,γ

wµ,γ
1
2
(
δµ,µ′ cos((γ′ − γ)− µθ) + δµ,−µ′ cos((γ′ + γ) + µθ)

)
Since µ, µ′ ≥ 0 and µ = −µ′ imply µ = µ′ = 0 this simplifies further to

= 1
2
∑
γ

wµ′,γ
(
cos((γ′ − γ)− µ′θ) + δµ′,0 cos(γ′ + γ)

)
.

A projection of the rhs yields:

〈bµ′,γ′ , κ〉 = 1
2π

∫
dφ bµ′,γ′(φ)κ(φ)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ) cos(µφ+ γ)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′) cos(µφ+ γ)

= 1
2
∑
γ

wµ′,γ
(
cos(γ′ − γ) + δµ′,0 cos((γ′ + γ))

)
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The projections are required to coincide for all rotations:

〈bµ′,γ′ , Rθκ〉 = 〈bµ′,γ′ , κ〉 ∀θ ∈ [0, 2π)∑
γ

wµ′,γ
(
cos((γ′−γ)−µ′θ) + δµ′,0 cos((γ′+γ))

)
=
∑
γ

wµ′,γ
(
cos(γ′−γ)+δµ′,0 cos((γ′+γ))

)
∀θ ∈ [0, 2π)

We consider two cases:

•µ′=0 In this case, the basis in Eq.(B.13) is restricted to the single case γ′ = 0 (as
γ′ = π

2 and µ′ = 0 together lead to a null basis element). Then:

∑
γ

w0,γ (cos(−γ) + cos(γ)) =
∑
γ

w0,γ (cos(−γ) + cos(γ))

As γ ∈ {0, π2 } and cos(±π
2 ) = 0:

⇔ w0,0 (cos(0) + cos(0)) = w0,0 (cos(0) + cos(0))

⇔ w0,0 = w0,0

which is always true.

•µ′>0 Here:

∑
γ

wµ′,γ cos((γ′ − γ)− µ′θ) =
∑
γ

wµ′,γ cos(γ′ − γ) ∀θ ∈ [0, 2π)

⇔ wµ′,0 cos(γ′ 9 µ′θ) + wµ′,π2 sin(γ′ 9 µ′θ) = wµ′,0 cos(γ′) + wµ′,π2 sin(γ′) ∀θ ∈ [0, 2π)

⇔ −µ′θ = 2tπ ∀θ ∈ [0, 2π),

where Eq. (B.8) was used in the last step. From the last equation one can see
that µ′ must be zero. Since this contradicts the assumption that µ′ ≥ 0, no
solution exists.

This results in a one dimensional basis of isotropic (rotation invariant) kernels

KSO(2)
ψm←ψn =

{
b0,0(φ) = 1

}
(B.14)

for m = n = 0, i.e. trivial representations. The basis is presented in the upper left
cell of Tab. B.1.
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1 and 2-dimensional irreps:

Finally, consider the case of a 1-dimensional irrep in the input and a 2-dimensional
irrep in the output, that is, ρout = ψ

SO(2)
m and ρin = ψ

SO(2)
0 . The corresponding kernel

κij : R2 → R2×1 can be expanded in the following generalized Fourier series on
L2(R2)2×1:

κ(r, φ) =
∞∑
µ=0

A0,µ(r)
[
cos(µφ)

0

]
+ B0,µ(r)

[
sin(µφ)

0

]

+ A1,µ(r)
[

0
cos(µφ)

]
+ B1,µ(r)

[
0

sin(µφ)

]

As before, we perform a change of basis to produce a non-sparse basis

κ(r, φ)=
∞∑

µ=−∞

∑
γ∈{0,π2 }

wγ,µ(r)
[
cos(µφ+ γ)
sin(µφ+ γ)

]
.

Dropping the radial parts as usual, this corresponds to the complete basis :{
bµ,γ(φ) =

[
cos(µφ+ γ)
sin(µφ+ γ)

] ∣∣∣∣ µ ∈ Z, γ ∈ {0, π2

}}
(B.15)

of angular kernels on L2(S1)2×1.

The constraint in Eq. (3.12) requires the kernel space to satisfy

κ(φ+ θ) = ψSO(2)
m (rθ)κ(φ)ψSO(2)

0 (rθ)−1 ∀θ, φ ∈ [0, 2π)

⇔ κ(φ+ θ) = ψSO(2)
m (rθ)κ(φ) ∀θ, φ ∈ [0, 2π).

We again project both sides of this equation on the basis elements defined above
where the projection on L2(S1)2×1 is defined by 〈k1, k2〉 = 1

2π
∫
dφ k1(φ)Tk2(φ).

Consider first the projection of the lhs

〈bµ′,γ′ , Rθκ〉 = 1
2π

∫
dφ bµ′,γ′(φ)T (Rθκ) (φ)

= 1
2π

∫
dφ bµ′,γ′(φ)Tκ(φ+ θ) ,
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which, after expanding the kernel in terms of the basis reads:

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ)T

[
cos(µ(φ+ θ) + γ)
sin(µ(φ+ θ) + γ)

]

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ

[
cos(µ′φ+ γ′) sin(µ′φ+ γ′)

] [cos(µ(φ+ θ) + γ)
sin(µ(φ+ θ) + γ)

]

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos((µ′ − µ)φ+ (γ′ − γ)− µθ).

As before, the integral is non-zero only if the frequency is 0, i.e. iff µ′ − µ = 0 and
thus:

=
∑
γ

wµ′,γ cos((γ′ − γ)− µ′θ)

For the rhs we obtain:

〈bµ′,γ′ , ψSO(2)
m (rθ)κ(·)〉

= 1
2π

∫
dφ bµ′,γ′(φ)Tψm(rθ)κ(φ)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ)Tψm(rθ)

[
cos(µφ+ γ)
sin(µφ+ γ)

]

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ

[
cos(µ′φ+ γ′) sin(µ′φ+ γ′)

]
ψm(rθ)

[
cos(µφ+ γ)
sin(µφ+ γ)

]

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′ − µφ− γ −mθ)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos((µ′ − µ)φ+ γ′ − γ −mθ) .

The integral is non-zero only if the frequency is 0, i.e. µ′ − µ = 0:

=
∑
γ

wµ′,γ cos(γ′ − γ −mθ)
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Requiring the projections to be equal implies

〈bµ′,γ′ , Rθκ〉 = 〈bµ′,γ′ , ψm(rθ)κ(·)〉 ∀θ ∈ [0, 2π)

⇔
∑
γ

wµ′,γ cos(γ′ − γ − µ′θ) =
∑
γ

wµ′,γ cos(γ′ − γ −mθ) ∀θ ∈ [0, 2π)

⇔ wµ′,0 cos(γ′−µ′θ) + wµ′,π2 sin(γ′−µ′θ) = wµ′,0 cos(γ′−mθ) + wµ′,π2 sin(γ′−mθ)

∀θ ∈ [0, 2π)

⇔ γ′ − µ′θ = γ′ −mθ + 2tπ ∀θ ∈ [0, 2π)

⇔ µ′θ = mθ + 2tπ ∀θ ∈ [0, 2π),

where we made use of Eq. (B.8) once again. It follows that µ′ = m, resulting in the
two-dimensional basis

KSO(2)
ψm←ψn =

{
bm,γ(φ) =

[
cos(mφ+ γ)
sin(mφ+ γ)

] ∣∣∣∣ γ ∈ {0, π2

}}
(B.16)

of equivariant kernels for m > 0 and n = 0. This basis is explicitly given in the lower
left cell of Tab. B.1.

2 and 1-dimensional irreps:

The case for 2-dimensional input and 1-dimensional output representations, i.e.
ρin = ψ

SO(2)
n and ρout = ψ

SO(2)
0 , is identical to the previous one up to a transpose.

The final two-dimensional basis for m = 0 and n > 0 is therefore given by

KSO(2)
ψm←ψn =

{
bn,γ(φ) =

[
cos(nφ+ γ) sin(nφ+ γ)

] ∣∣∣∣ γ ∈ {0, π2

}}
(B.17)

as shown in the upper right cell of Tab. B.1.
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B.2.3 Reflection Group

The action of the reflection group ({±1}, ∗) on R2 depends on a choice of reflection
axis, which we specify by an angle β. More precisely, the element s ∈ ({±1}, ∗) acts
on x = (r, φ) ∈ R2 as

s.x(r, φ) := x(r, s.φ) := x(r, 2βδs,−1 + sφ) =

x(r, φ) if s = 1

x(r, 2β − φ) if s = 91 .

The kernel constraint for the reflection group is therefore being made explicit by

κ(r, s.φ) = ρout(s)κ(r, φ)ρin(s)−1 ∀s ∈ ({±1}, ∗), φ ∈ [0, 2π)

⇔ κ(r, δs,−12β + sφ) = ρout(s)κ(r, φ)ρin(s)−1 ∀s ∈ ({±1}, ∗), φ ∈ [0, 2π)

⇔ κ(r, δs,−12β + sφ) = ρout(s)κ(r, φ)ρin(s) ∀s ∈ ({±1}, ∗), φ ∈ [0, 2π) ,

where we used the identity s−1 = s. For s = +1 the constraint is trivially true. We
will thus in the following consider the case s = −1, that is,

κ(r, 2β − φ) = ρout(−1)κ(r, φ)ρin(−1) ∀φ ∈ [0, 2π) .

In order to simplify this constraint further we define a transformed kernel κ′(r, φ) :=
κ(r, φ+ β) which is oriented relative to the reflection axis. The transformed kernel
is then required to satisfy

κ′(r, β − φ) = ρout(−1)κ′(r, φ− β)ρin(−1) ∀φ ∈ [0, 2π) ,

which, with the change of variables φ′ = φ − β , reduces to the constraint for
equivariance under reflections around the x-axis, i.e. the case for β = 0 :

κ′(r,−φ′) = ρout(−1)κ′(r, φ′)ρin(−1) ∀φ′ ∈ [0, 2π) .

As a consequence we can retrieve kernels equivariant under reflections around the
β-axis through

κ(r, φ) := κ′(r, φ− β) .

We will therefore without loss of generality consider the case β = 0 only in the
following.

1-dimensional irreps:
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The reflection group ({±1}, ∗) has only two irreps, namely the trivial representation
ψ

({±1},∗)
0 (s) = 1 and the sign-flip representation ψ({±1},∗)

1 (s) = s. Therefore only the
1-dimensional case with a kernel of form κ : R2 → R1×1 exists. Note that we can
write the irreps out as ψ({±1},∗)

f (s) = sf , in particular ψ({±1},∗)
f (−1) = (−1)f .

Consider the output and input irreps ρout = ψ
({±1},∗)
i and ρin = ψ

({±1},∗)
j (with

i, j ∈ {0, 1}) and the usual 1-dimensional Fourier basis for scalar functions in L2(S1)
as before:

{
bµ,γ(φ) = cos(µφ+ γ)

∣∣∣∣∣ µ ∈ N, γ ∈
{0} if µ = 0
{0, π/2} otherwise

}
(B.18)

Defining the reflection operator S by its action (S κ) (φ) := κ(−φ), we require the
projections of both sides of the kernel constraint on the same basis element to be
equal as usual. Specifically, for a particular basis bµ′,γ′:

〈bµ′,γ′ , S κ〉 = 〈bµ′,γ′ , ψ
({±1},∗)
i (−1)κ(·)ψ({±1},∗)

j (−1)〉

The lhs implies

〈bµ′,γ′ , S κ〉 =
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ)bµ,γ(−φ)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′) cos(−µφ+ γ)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ

1
2
(
cos((µ′ + µ)φ+ (γ′ − γ)) + cos((µ′ − µ)φ+ (γ′ + γ))

)
=
∑
γ

wµ′,γ
1
2
(
cos(γ′ + γ) + δµ′,0 cos(γ′ − γ)

)
while the rhs leads to

〈bµ′,γ′ , ψ({±1},∗)
m (−1)κ(·)ψ({±1},∗)

n (−1)〉

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ)ψ({±1},∗)

i (−1)bµ,γ(φ)ψ({±1},∗)
j (−1)

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′)(−1)i cos(µφ+ γ)(−1)j

= (−1)i+j
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′) cos(µφ+ γ)

= (−1)i+j
∑
γ

wµ′,γ
1
2
(
cos(γ′ − γ) + δµ′,0 cos(γ′ + γ)

)
.
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Now, we require both sides to be equal, that is,

∑
γ

wµ′,γ
1
2
(
cos(γ′ + γ) + δµ′,0 cos(γ′ 9 γ)

)
= (91)i+j

∑
γ

wµ′,γ
1
2
(
cos(γ′ 9 γ) + δµ′,0 cos(γ′ + γ)

)
and again consider two cases for µ′:

•µ′ = 0 The basis in Eq.(B.18) is restricted to the single case γ′ = 0. Hence:

∑
γ

w0,γ
1
2 (cos(γ) + cos(−γ)) = (−1)i+j

∑
γ

w0,γ
1
2 (cos(−γ) + cos(γ))

As γ ∈ {0, π2 } and cos(±π
2 ) = 0:

⇔ w0,0
1
2 (cos(0) + cos(0)) = (−1)i+jw0,0

1
2 (cos(−0) + cos(0))

⇔ w0,0 = (−1)i+jw0,0

Which is always true when i = j, while it enforces w0,0 = 0 when i 6= j.

•µ′ > 0 In this case we get:

∑
γ

wµ′,γ
1
2 cos(γ′ + γ) = (−1)i+j

∑
γ

wµ′,γ
1
2 cos(γ′ − γ)

⇔ (1− (−1)i+j)wµ′,0 cos(γ′) = (1 + (−1)i+j)wµ,π2 sin(γ′)

If i + j ≡ 0 mod 2, the equation becomes sin(γ′) = 0 and, so, γ′ = 0. Oth-
erwise, it becomes cos(γ′) = 0, which means γ′ = π

2 . Shortly, γ′ = (i + j

mod 2)π2 .

As a result, only half of the basis for β = 0 is preserved:

K({±1},∗),β=0
ψi←ψj =

{
bµ,γ(φ) = cos(µφ+ γ)

∣∣∣∣ µ ∈ N, γ = (i+ j mod 2)π2 , µ > 0 ∨ γ = 0
}

(B.19)

The solution for a general reflection axis β is therefore given by

K({±1},∗),β
ψi←ψj =

{
bµ,γ(φ)=cos(µ(φ 9 β) + γ)

∣∣∣∣µ ∈ N, γ=(i+ j mod 2)π2 , µ > 0 ∨ γ = 0
}

(B.20)

which is visualized in Tab. B.3 for the different cases of irreps for i, j ∈ {0, 1}.
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B.2.4 Orthogonal Group O(2)

The orthogonal group O(2) is the semi-direct product between the rotation group
SO(2) and the reflection group ({±1}, ∗), i.e. O(2) ∼= SO(2)o({±1}, ∗). This justifies
a decomposition of the constraint on O(2)-equivariant kernels as the union of the
constraints for rotations and reflections. Consequently, the space of O(2)-equivariant
kernels is the intersection between the spaces of SO(2)- and reflection-equivariant
kernels.

Proof

Sufficiency:

Assume a rotation- and reflection-equivariant kernel, i.e. a kernel which for all
r ∈ R+

0 and φ ∈ [0, 2π) satisfies

κ(r, rθφ) =
(
ResO(2)

SO(2) ρout

)
(rθ) κ(r, φ)

(
ResO(2)

SO(2) ρin

)−1
(rθ) ∀ rθ ∈ SO(2)

= ρout(rθ) κ(r, φ) ρ−1
in (rθ)

and

κ(r, sφ) =
(
ResO(2)

({±1},∗) ρout

)
(s) κ(r, φ)

(
ResO(2)

({±1},∗) ρin

)−1
(s) ∀ s ∈ ({±1}, ∗)

= ρout(s) κ(r, φ) ρ−1
in (s) .

Then, for any h = rθs ∈ O(2), the kernel constraint becomes:

κ(r, hφ) = ρout(h) κ(r, φ) ρ−1
in (h)

⇔ κ(r, rθsφ) = ρout(rθs) κ(r, φ) ρ−1
in (rθs)

⇔ κ(r, rθsφ) = ρout(rθ)ρout(s) κ(r, φ) ρ−1
in (s)ρ−1

in (rθ) .

Applying reflection-equivariance this equation simplifies to

⇔ κ(r, rθsφ) = ρout(rθ) κ(r, sφ) ρ−1
in (rθ) ,

which, applying rotation-equivariance yields

⇔ κ(r, rθsφ) = κ(r, rθsφ) .

Hence any kernel satisfying both SO(2) and reflection constraints is also O(2)
equivariant.

Necessity:
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Trivially, O(2) equivariance implies equivariance under SO(2) and reflections.
Specifically, for any r ∈ R+

0 and φ ∈ [0, 2π), the equation

κ(r, hφ) = ρout(h) κ(r, φ) ρ−1
in (h) ∀ h = rθs ∈ O(2)

implies

κ(r, rθφ) = ρout(rθ) κ(r, φ) ρ−1
in (rθ)

=
(
ResO(2)

SO(2) ρout

)
(rθ) κ(r, φ)

(
ResO(2)

SO(2) ρin

)−1
(rθ) ∀ rθ ∈ SO(2)

and

κ(r, sφ) = ρout(s) κ(r, φ) ρ−1
in (s)

=
(
ResO(2)

({±1},∗) ρout

)
(s) κ(r, φ)

(
ResO(2)

({±1},∗) ρin

)−1
(s) ∀ s ∈ ({±1}, ∗).

This observation allows us to derive the kernel space for O(2) by intersecting the
previously derived kernel space of SO(2) with the kernel space of the reflection
group:

KO(2)
ρout←ρin

=
{
κ | κ(r, h.φ) = ρout(h)κ(r, φ)ρin(h)−1 ∀ h ∈ O(2)

}
=

{
κ | κ(r, rθ.φ) = ρout(rθ)κ(r, φ)ρin(rθ)−1 ∀ rθ ∈ SO(2)

}
∩
{
κ | κ(r, s.φ) = ρout(s)κ(r, φ)ρin(s)−1 ∀ s ∈ ({±1}, ∗)

}

As O(2) contains all rotations, it does also contain all reflection axes. Without loss
of generality, we define s ∈ O(2) as the reflection along the x-axis. A reflection
along any other axis β is associated with the group element r2βs ∈ O(2), i.e. the
combination of a reflection with a rotation of 2β. As a result, we consider the basis
for reflection equivariant kernels derived for β = 0 in Eq. (B.19).

Therefore, to derive a basis associated to a pair of input and output representations
ρin and ρout, we restrict the representations to SO(2) and the reflection group, com-
pute the two bases using the results found in Appendix B.2.2 and in Appendix B.2.3,
and, finally, take their intersection.

2-dimensional irreps:

The restriction of any 2-dimensional irrep ψ
O(2)
1,n of O(2) to the reflection group
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decomposes into the direct sum of the two 1-dimensional irreps of the reflection
group, i.e. into the diagonal matrix

ResO(2)
({±1},∗) ψ1,n(s) =

(
ψ

({±1},∗)
0 ⊕ ψ({±1},∗)

1

)
(s) =

ψ({±1},∗)
0 (s) 0

0 ψ
({±1},∗)
1 (s)

 =
[
1 0
0 s

]
.

It follows that the restricted kernel space constraint decomposes into independent
constraints on each entry of the original kernel. Specifically, for output and input
representations ρout = ψ

O(2)
1,m and ρin = ψ

O(2)
1,n , the constraint becomes

κ(s.x) =

 ψ
({±1},∗)
0 (s)

ψ
({±1},∗)
1 (s)


︸ ︷︷ ︸

ResO(2)
({±1},∗) ρout(s)

·

 κ00 κ01

κ10 κ11


︸ ︷︷ ︸

κ(x)

·

 ψ
({±1},∗)
0 (s)−1

ψ
({±1},∗)
1 (s)−1


︸ ︷︷ ︸

ResO(2)
({±1},∗) ρin(s)

We can therefore solve for a basis for each entry individually following Appendix B.2.3
to obtain the complete basis

{
b00
µ,0 (φ) =

[
cos(µφ) 0

0 0

] ∣∣∣∣ µ ∈ N }
∪
{
b01
µ,π2

(φ) =
[
0 sin(µφ)
0 0

] ∣∣∣∣ µ ∈ N+} ∪
{
b10
µ,π2

(φ) =
[

0 0
sin(µφ) 0

] ∣∣∣∣ µ ∈ N+} ∪ {
b11
µ,0 (φ) =

[
0 0
0 cos(µφ)

] ∣∣∣∣ µ ∈ N }
.

Through the same change of basis applied in the first paragraph of Appendix B.2.2,
we get the following equivalent basis for the same space:

{
bµ,s(φ) =

[
cos (µφ) 9 sin (µφ)
sin (µφ) cos (µφ)

] [
1 0
0 s

]}
µ∈Z,s∈{±1}

=
{
bµ,s(φ) = ψ(µφ)ξ(s)

}
µ∈Z,s∈{±1} . (B.21)

On the other hand, 2-dimensional O(2) representations restrict to the SO(2) irreps
of the corresponding frequency, i.e.

ResO(2)
SO(2) ρin = ResO(2)

SO(2) ψ
O(2)
1,n (rθ) = ψSO(2)

n (rθ)

and
ResO(2)

SO(2) ρout = ResO(2)
SO(2) ψ

O(2)
1,m (rθ) = ψSO(2)

m (rθ).

In Appendix B.2.2, a basis for SO(2)-equivariant kernels with respect to a ψSO(2)
n

input field and ψSO(2)
m output field was derived starting from the basis in Eq. (B.9).
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Notice that the basis of reflection-equivariant kernels in Eq. (B.21) contains exactly
half of the elements in Eq. (B.9), indexed by γ = 0. A basis for O(2)-equivariant
kernels can be found by repeating the derivations in Appendix B.2.2 for SO(2)-
equivariant kernels using only the subset in Eq. (B.21) of reflection-equivariant
kernels. The resulting two-dimensional O(2)-equivariant basis, which includes
the SO(2)-equivariance conditions (µ = m − sn) and the reflection-equivariance
conditions (γ = 0), is given by

KO(2)
ψi,m←ψj,n =

{
bµ,0,s(φ) = ψ(µφ)ξ(s)

∣∣∣∣ µ = m− sn, s ∈ {±1}
}
, (B.22)

where i = j = 1 and m,n > 0. See the bottom right cell in Tab. B.2.

1-dimensional irreps:

O(2) has two 1-dimensional irreps ψO(2)
0,0 and ψO(2)

1,0 (see Sec. 2.7.2). Both are trivial
under rotations and each of them corresponds to one of the two reflection group’s
irreps, i.e.

ResO(2)
({±1},∗) ψ

O(2)
i,0 (s) = ψ

({±1},∗)
i (s)= si

and

ResO(2)
SO(2) ψ

O(2)
i,0 (rθ) = ψ

SO(2)
0 (rθ) = 1.

Considering output and input representations ρout = ψ
O(2)
i,0 and ρin = ψ

O(2)
j,0 , it follows

that:

ResO(2)
({±1},∗) ρin = ResO(2)

({±1},∗) ψ
O(2)
j,0 = ψ

({±1},∗)
j

ResO(2)
({±1},∗) ρout = ResO(2)

({±1},∗) ψ
O(2)
i,0 = ψ

({±1},∗)
i

ResO(2)
SO(2) ρin = ResO(2)

SO(2) ψ
O(2)
j,0 = ψ

SO(2)
0

ResO(2)
SO(2) ρout = ResO(2)

SO(2) ψ
O(2)
i,0 = ψ

SO(2)
0

In order to solve the O(2) kernel constraint consider again the reflectional constraint
and the SO(2) constraint. Bases for reflection-equivariant kernels with above rep-
resentations were derived in Appendix B.2.3 and are shown in Eq. (B.19). These
bases form a subset of the Fourier basis in Eq. (B.13) which is being indexed by
γ = (i+ j mod 2)π2 . On the other hand, the full Fourier basis was restricted by the
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SO(2) constraint to satisfy µ = 0 and therefore γ = 0, see Eq. (B.14). Intersecting
both constraints therefore implies i = j, resulting in the O(2)-equivariant basis

KO(2)
ψi,m←ψj,n =

{b0,0(φ) = 1} if i = j,

∅ else
(B.23)

for m,n = 0 which is shown in the top left cell in Tab. B.2.

1 and 2-dimensional irreps:

Now we consider the 2-dimensional output representation ρout = ψ
O(2)
1,m and the

1-dimensional input representation ρin = ψ
O(2)
j,0 .

Following the same strategy as before we find the reflectional constraints for these
representations to be given by

κ(s.x) =

 ψ
({±1},∗)
0 (s)

ψ
({±1},∗)
1 (s)


︸ ︷︷ ︸

ResO(2)
({±1},∗) ρout(s)

·

 κ00

κ10


︸ ︷︷ ︸
κ(x)

·
(
ψ

({±1},∗)
j (s)−1

)
︸ ︷︷ ︸
ResO(2)

({±1},∗) ρin(s)

,

and therefore to decompose into two independent constraints on the entries κ00 and
κ10. Solving for a basis for each entry and taking their union as before we get2

{
b00
µ (φ) =

[
cos(µφ+ j π2 )

0

]}
µ∈N

∪
{
b10
µ (φ) =

[
0

sin(µφ− j π2 )

]}
µ∈N

,

which, through a change of basis, can be rewritten as

{
bµ,j π2 (φ) =

[
cos(µφ+ j π2 )
sin(µφ+ j π2 )

]}
µ∈Z

. (B.24)

We intersect this basis with the basis of SO(2) equivariant kernels with respect to a
ResO(2)

SO(2) ρin = ψ
SO(2)
0 input field and ResO(2)

SO(2) ρout = ψ
SO(2)
m output field as derived in

Appendix B.2.2. Both constraints, that is, γ = j π2 for the reflection group and µ = m

2Notice that for µ = 0 some of the elements of the set are zero and are therefore not part of the basis.
We omit this detail to reduce clutter.
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for SO(2) (see Eq. (B.15)), define the one-dimensional basis for O(2)-equivariant
kernels for n = 0, m > 0 and i = 1 as

KO(2)
ψi,m←ψj,n =

{
bµ,j π2 (φ) =

[
cos(µφ+ j π2 )
sin(µφ+ j π2 )

] ∣∣∣∣ µ = m

}
, (B.25)

see the bottom left cell in Tab. B.2.

2 and 1-dimensional irreps:

As already argued in the case for SO(2), the basis for 2-dimensional input representa-
tions ρin = ψ

O(2)
1,n and 1-dimensional output representations ρout = ψ

O(2)
i,0 is identical

to the previous basis up to a transpose, i.e. it is given by

KO(2)
ψi,m←ψj,n =

{
bµ,iπ2 (φ) =

[
cos(µφ+ iπ2 ) sin(µφ+ iπ2 )

] ∣∣∣∣ µ = n

}
,

(B.26)

where j = 1, n > 0 and m = 0. This case is visualized in the top right cell of
Tab. B.2.

B.2.5 Cyclic Group CN

The derivations for CN coincide mostly with the derivations done for SO(2) with
the difference that the projected constraints need to hold for discrete angles θ ∈{
p2π
N | p = 0, . . . , N − 1

}
only. Furthermore, CN has one additional 1-dimensional

irrep of frequencyN/2 if (and only if) N is even.

2-dimensional irreps:

During the derivation of the solutions for SO(2)’s 2-dimensional irreps in Ap-
pendix B.2.2, we assumed continuous angles only in the very last step. The constraint
in Eq. (B.11) therefore holds for CN as well. Specifically, it demands that for each
θ ∈ {p2π

N | p = 0, . . . , N − 1} there exists a t ∈ Z such that:

(µ′ − (m− ns′))θ = 2tπ

⇔ (µ′ − (m− ns′))p2π
N

= 2tπ

⇔ (µ′ − (m− ns′))p = tN
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The last result corresponds to a system of N linear congruence equations modulo N
which require N to divide (µ′ − (m− ns′))p for each non-negative integer p smaller
than N . Note that solutions of the constraint for p = 1 already satisfy the constraints
for p ∈ 2, . . . , N − 1 such that it is sufficient to consider

(µ′ − (m− ns′))1 = tN

⇔ µ′ = m− ns′ + tN .

The resulting basis

KCN
ψm←ψn=

{
bµ,γ,s(φ) = ψ(µφ+ γ)ξ(s)

∣∣∣∣µ = m 9 sn+ tN, γ ∈
{

0, π2

}
s ∈ {±1}

}
t∈Z

(B.27)

for m,n > 0 thus coincides mostly with the basis B.12 for SO(2) but contains
solutions for aliased frequencies, defined by adding tN . The bottom right cell in
Tab. B.4 gives the explicit form of this basis.

1-dimensional irreps:

The same trick could be applied to solve the remaining three cases. However, since
CN has an additional one dimensional irrep of frequency N/2 for even N it is
convenient to rederive all cases. We therefore consider ρout = ψCN

m and ρin = ψCN
n ,

where m,n ∈ {0, N/2}. Note that ψCN
m (θ), ψCN

n (θ) ∈ {±1} for θ ∈ {p2π
N | p =

0, . . . , N − 1}.

We use the same Fourier basis

{
bµ,γ(φ) = cos(µφ+ γ)

∣∣∣∣∣ µ ∈ N, γ ∈
{0} if µ = 0
{0, π/2} otherwise

}
(B.28)

and the same projection operators as used for SO(2).

Since the lhs of the kernel constraint does not depend on the representations consid-
ered its projection 〈bµ′,γ′ , Rθκ〉 is the same found for SO(2):

〈bµ′,γ′ , Rθκ〉 = 1
2
∑
γ

wµ′,γ
(
cos((γ′ − γ)− µ′θ) + δµ′,0 cos(γ′ + γ)

)
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For the rhs we find

〈bµ′,γ′ , ψCN
m (rθ)κ ψCN

n (rθ)−1〉

= 1
2π

∫
dφ bµ′,γ′(φ)ψCN

m (rθ)κ(φ)ψCN
n (rθ)−1 ,

which by expanding the kernel in the linear combination of the basis and writing the
respresentations out yields:

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ) cos(mθ)bµ,γ(φ) cos(nθ)−1

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′) cos(mθ) cos(µφ+ γ) cos(nθ)−1

Since cos(nθ) ∈ {±1} the inverses can be dropped and terms can be collected via
trigonometric identities:

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ cos(µ′φ+ γ′) cos(mθ) cos(µφ+ γ) cos(nθ)

=
∑
µ,γ

wµ,γ cos(mθ) cos(nθ) 1
2π

∫
dφ cos(µ′φ+ γ′) cos(µφ+ γ)

=
∑
µ,γ

wµ,γ cos((±m± n)θ) 1
4π

∫
dφ
(
cos((µ′9 µ)φ+ γ′9 γ) + cos((µ′ + µ)φ+ γ′+ γ)

)
=
∑
µ,γ

wµ,γ cos((±m± n)θ)1
2
(
δµ,µ′ cos(γ′ − γ) + δµ+µ′,0 cos(γ′ + γ)

)
= 1

2
∑
µ′,γ

wµ′,γ cos((±m± n)θ)
(
cos(γ′ − γ) + δµ′,0 cos(γ′ + γ)

)

We require the projections to be equal for each θ = p2π
N with p ∈ {0, . . . , N − 1}:

〈bµ′,γ′ , Rθκ〉 =
〈
bµ′,γ′ , ψ

CN
m (rθ)κ ψCN

n (rθ)−1
〉

⇔
∑
γ

wµ′,γ
(
cos((γ′ − γ)− µ′θ) + δµ′,0 cos(γ′ + γ)

)
=

=
∑
µ′,γ

wµ′,γ cos((±m± n)θ)
(

cos(γ′ − γ) + δµ′,0 cos(γ′ + γ)
)

Again, we consider two cases for µ′:
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•µ′ = 0 : The basis in Eq.(B.28) is restricted to the single case γ′ = 0.

∑
γ

w0,γ(cos(−γ)+cos(γ)) = cos((±m±n)θ)
∑
γ

w0,γ
(
cos(−γ)+cos(γ)

)
⇔ w0,02 cos(0) + w0,π2 0 = cos((±m± n)θ)

(
w0,02 cos(0) + w0,π2 0

)
⇔ w0,0 = cos((±m± n)θ)w0,0

If cos((±m± n)θ) 6= 1, the coefficient w0,0 is forced to 0. Conversely:

cos((±m± n)θ) = 1

⇔ ∃t ∈ Z s.t. (±m± n)θ = 2tπ

Using θ = p2π
N :

⇔ ∃t ∈ Z s.t. (±m± n)p2π
N

= 2tπ

⇔ ∃t ∈ Z s.t. (±m± n)p = tN

•µ′ > 0 :

∑
γ

wµ′,γ cos(γ′ − γ − µ′θ) = cos((±m± n)θ)
∑
γ

wµ′,γ cos(γ′ − γ)

⇔ wµ′,0 cos(γ′ − µ′θ) + wµ′,π2 sin(γ′ − µ′θ) =

cos((±m± n)θ)
(
wµ′,0 cos(γ′) + wµ′,π2 sin(γ′)

)
Since (±m± n)θ ∈ {9π, 0, π} we have cos((±m± n)θ) = ±1, therefore:

⇔ wµ′,0 cos(γ′ 9 µ′θ) + wµ′,π2 sin(γ′ 9 µ′θ) =

= wµ′,0 cos(γ′ + (±m± n)θ) + wµ′,π2 sin(γ′ + (±m± n)θ)

Using the property in Eq. (B.8):

⇔ ∃t ∈ Z s.t. γ′ − µ′θ = γ′ + (±m± n)θ + 2tπ

⇔ ∃t ∈ Z s.t. µ′θ = (±m± n)θ + 2tπ

Using θ = p2π
N :

⇔ ∃t ∈ Z s.t. µ′p
2π
N

= (±m± n)p2π
N

+ 2tπ

⇔ ∃t ∈ Z s.t. µ′p = (±m± n)p+ tN

⇔ ∃t ∈ Z s.t. (±m± n+ µ′)p = tN
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In both cases µ′ = 0 and µ′ > 0 we thus find the constraints

∀p ∈ {0, 1, . . . , N − 1} ∃t ∈ Z s.t. (±m± n+ µ′)p = tN .

It is again sufficient to consider the constraint for p = 1 which results in solutions
with frequencies µ′ = ±m±n+ tN . As (±m±n) ∈

{
0,±N

2 ,±N
}

, all valid solutions
are captured by µ′ = (m+ n mod N) + tN , resulting in the basis

KCN
ψm←ψn=

{
bµ,γ(φ)=cos(µφ+γ)

∣∣∣∣µ=(m+n modN)+tN, γ∈
{

0, π2

}
, µ 6=0∨γ=0

}
t∈N

(B.29)

for n,m ∈
{

0, N2
}

. See the top left cells in Tab. B.4.

1 and 2-dimensional irreps Next consider a 1-dimensional irrep ρin = ψCN
n with

n ∈ {0, N2 } in the input and a 2-dimensional irrep ρout = ψCN
m in the output. We

derive the solutions by projecting the kernel constraint on the basis introduced in
Eq. (B.15).

For the lhs the projection coincides with the result found for SO(2) as before:

〈bµ′,γ′ , Rθκ〉 =
∑
γ

wµ′,γ cos((γ′ − γ)− µ′θ)

An expansion and projection of rhs gives:

〈bµ′,γ′ , ψCN
m (rθ)κ(·)ψCN

n (rθ)−1〉

= 1
2π

∫
dφ bµ′,γ′(φ)TψCN

m (rθ)κ(φ)ψCN
n (rθ)−1

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ bµ′,γ′(φ)TψCN

m (rθ)
[
cos(µφ+ γ)
sin(µφ+ γ)

]
ψCN
n (rθ)−1

=
∑
µ,γ

wµ,γ
1

2π

∫
dφ
[
cos(µ′φ+ γ′) sin(µ′φ+ γ′)

]
ψCN
m (rθ)

[
cos(µφ+ γ)
sin(µφ+ γ)

]
ψCN
n (rθ)91

=
∑
µ,γ

wµ,γ

( 1
2π

∫
dφ cos(µ′φ+ γ′ − µφ− γ −mθ)

)
ψCN
n (rθ)−1 .

The integral is non-zero only if the frequency is 0, i.e. iff µ′ = µ:

=
∑
γ

wµ′,γ cos(γ′ − γ −mθ)ψCN
n (rθ)−1

=
∑
γ

wµ′,γ cos(γ′ − γ −mθ) cos(±nθ)
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Since ±nθ = pπ for some p ∈ N one has sin(±nθ) = 0 which allows to add the
following zero summand and simplify:

=
∑
γ

wµ′,γ
(
cos(γ′ − γ −mθ) cos(±nθ)− sin(γ′ − γ −mθ) sin(±nθ)

)
=
∑
γ

wµ′,γ cos(γ′ − γ − (m± n)θ)

Requiring the projections to be equal then yields:

〈bµ′,γ′ , Rθκ〉 = 〈bµ′,γ′ , ψCN
m (rθ)κ(·)ψCN

n (rθ)−1〉 ∀θ ∈
{
p

2π
N

}
⇔

∑
γ

wµ′,γ cos(γ′ − γ − µ′θ) =
∑
γ

wµ′,γ cos(γ′ − γ − (m± n)θ) ∀θ ∈
{
p

2π
N

}
⇔ wµ′,0 cos(γ′9µ′θ)+wµ′,π2 sin(γ′9µ′θ) = wµ′,0 cos(γ′9(m±n)θ)+wµ′,π2 sin(γ′9(m±n)θ)

∀θ ∈
{
p

2π
N

}
Using the property in Eq. (B.8), this requires that for each θ there exists a t ∈ Z such
that:

⇔ γ′ − µ′θ = γ′ − (m± n)θ + 2tπ ∀θ ∈
{
p

2π
N

}
⇔ µ′θ = (m± n)θ + 2tπ ∀θ ∈

{
p

2π
N

}

Since θ = p2π
N with p ∈ {0, . . . , N − 1} we find that

⇔ µ′p
2π
N

= (m± n)p2π
N

+ 2tπ ∀p ∈ {0, . . . , N 91}

⇔ µ′p = (m± n)p+ tN ∀p ∈ {0, . . . , N 91}

⇔ µ′ = (m± n) + tN

⇔ µ′ − (m± n) = tN ,

which implies that N needs to divide µ′ − (m ± n). It follows that the condition
holds also for any other p. This gives the basis

KCN
ψm←ψn =

{
bµ,γ(φ) =

[
cos(µφ+ γ)
sin(µφ+ γ)

] ∣∣∣∣ µ = (m± n) + tN, γ ∈
{

0, π2

}}
t∈Z

(B.30)

for m > 0 and n ∈
{

0, N2
}

; see the bottom left cells in Tab. B.4.
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2 and 1-dimensional irreps:

The basis for 2-dimensional input and 1-dimensional output representations, i.e.
ρin = ψCN

n and ρout = ψCN
m with n > 0 and m ∈ {0, N2 }, is identical to the previous

one up to a transpose:

KCN
ψm←ψn =

{
bµ,γ(φ)=

[
cos(µφ+ γ) sin(µφ+ γ)

] ∣∣∣∣ µ=(±m+n)+tN, γ ∈
{

0, π2

}}
t∈Z

(B.31)

for n > 0 and m ∈
{

0, N2
}

. See the top right cells in Tab. B.4.

B.2.6 Dihedral Group DN

A solution for DN can easily be derived by repeating the process done for O(2) in
Appendix B.2.4 but starting from the bases derived for CN in Appendix B.2.5 instead
of those for SO(2).

In contrast to the case of O(2)-equivariant kernels, the choice of reflection axis β is
not irrelevant since DN does not act transitively on axes. More precisely, the action of
DN defines equivalence classes β ∼= β′ ⇔ ∃ 0 ≤ n < N : β = β′+n2π

N of axes which
can be labeled by representatives β ∈ [0, 2π

N ). For the same argument considered in
Appendix B.2.3 we can without loss of generality consider reflections along the axis
β = 0 in our derivations and retrieve kernels κ′, equivariant to reflections along a
general axis β, as κ′(r, φ) = κ(r, φ− β).

2-dimensional irreps:

For 2-dimensional input and output representations ρin = ψDN
1,n and ρout = ψDN

1,m, the
final basis is

KDN
ψi,m←ψj,n =

{
bµ,0,s(φ) = ψ(µφ)ξ(s)

∣∣∣∣ µ = m− sn+ tN, s ∈ {±1}
}
t∈Z

(B.32)

where i = j = 1 and m,n > 0. These solutions are written out explicitly in the
bottom right of Tab. B.5.

1-dimensional irreps:
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DN has 1-dimensional representations ρin = ψDN
j,n and ρout = ψDN

i,m for m,n ∈ {0, N2 }.
In these cases we find the bases

KDN
ψi,m←ψj,n =

{
bµ,γ(φ) = cos(µφ+ γ)

∣∣∣∣ µ = (m+ n mod N) + tN,

γ = (i+ j mod 2)π2 , µ 6= 0 ∨ γ = 0
}
t∈N

(B.33)

which are shown in the top left cells of Tab. B.5.

1 and 2-dimensional irreps:

For 1-dimensional input and 2-dimensional output representations, that is, ρin = ψDN
j,n

and ρout = ψDN
1,m with i = 1, m > 0 and n ∈ {0, N2 }, the kernel basis is given by:

KDN
ψi,m←ψj,n =

{
bµ,γ(φ) =

[
cos(µφ+ γ)
sin(µφ+ γ)

] ∣∣∣∣ µ = (m± n) + tN, γ = j
π

2

}
t∈Z

(B.34)

See the bottom left of Tab. B.5.

2 and 1-dimensional irreps:

Similarly, for 2-dimensional input and 1-dimensional output representations ρin =
ψDN

1,n and ρout = ψDN
i,m with j = 1, n > 0 and m ∈ {0, N2 }, we find:

KDN
ψi,m←ψj,n =

{
bµ,γ(φ)=

[
cos(µφ+ γ) sin(µφ+ γ)

] ∣∣∣∣ µ = (±m+ n) + tN, γ = i
π

2

}
t∈Z

(B.35)

Tab. B.5 shows these solutions in its top right cells.
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B.2.6.1. Kernel constraints at the origin

Our derivations rely on the fact that the kernel constraints restrict only the angular
parts of the unconstrained kernel space L2(R2)cout×cin which suggests an independent
solution for each radius r ∈ R+ ∪{0}. Particular attention is required for kernels
defined at the origin, i.e. when r = 0. The reason for this is that we are using
polar coordinates (r, φ) which are ambiguous at the origin where the angle is not
defined. In order to stay consistent with the solutions for r > 0 we still define the
kernel at the origin as an element of L2(S1)cout×cin . However, since the coordinates
(0, φ) map to the same point for all φ ∈ [0, 2π), we need to demand the kernels to
be angularly constant, that is, κ(φ) = κ(0). This additional constraint restricts the
angular Fourier bases used in the previous derivations to zero frequencies only. Apart
from this, the kernel constraints are the same for r = 0 and r > 0 which implies that
the G-steerable kernel bases at r = 0 are given by restricting the bases derived in
B.2.2, B.2.3, B.2.4, B.2.5 and B.2.6 to the elements indexed by frequencies µ = 0.

B.3 Complex valued representations and Harmonic
Networks

Instead of considering real (irreducible) representations we could have derived all
results using complex representations, acting on complex feature maps. For the
case of O(2) and DN this would essentially not affect the derivations since their
complex and real irreps are equivalent, that is, they coincide up to a change of
basis. Conversely, all complex irreps of SO(2) and CN are 1-dimensional which
simplifies the derivations in complex space. However, the solution spaces of complex
G-steerable kernels need to be translated back to a real valued implementation. This
translation has some not immediately obvious pitfalls which can lead to an underpa-
rameterized implementation in real space. In particular, Harmonic Networks [48]
were derived with a complete solution in complex space; however, their real valued
implementation is using a H-steerable kernel space of half the dimensionality as
ours. We will in the following explain why this is the case.

In the complex field, the irreps of SO(2) are given by ψCk (θ) = eikθ ∈ C with
frequencies k ∈ Z. Notice that these complex irreps are indexed by positive and
negative frequencies while their real counterparts, defined in Sec. 2.7.2, only involve
non-negative frequencies. As in [48] we consider complex feature fields fC : R2 → C
which are transforming according to complex irreps of SO(2). A complex input field
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fCin : R2 → C of type ψCn is mapped to a complex output field fCout : R2 → C of type
ψCm via the cross-correlation

fCout = kC ? fCin . (B.36)

with a complex filter kC : R2 → C. The (angular part of the) complete space of
equivariant kernels between fCin and fCout was in [48] proven to be parameterized
by

kC(φ) = w ei(m−n)φ,

where w ∈ C is a complex weight which scales and phase-shifts the complex expo-
nential. We want to point out that an equivalent parametrization is given in terms of
the real and imaginary parts wRe and wIm of the weight w, i.e.

kC(φ) = wReei(m−n)φ + iwImei(m−n)φ

= wReei(m−n)φ + wImei((m−n)φ+π/2) . (B.37)

The real valued implementation of Harmonic Networks models the complex fea-
ture fields fC of type ψCk (θ) by splitting them in two real valued channels fR :=
(fRe, f Im)T which contain their real and imaginary part. The action of the complex
irrep ψCk (θ) is modeled accordingly by a rotation matrix of the same, potentially
negative3 frequency. A real valued implementation of the cross-correlation (B.36) is
built using a real kernel k : R2 → R2×2 as specified by[

fReout

f Imout

]
=
[
kRe −kIm

kIm kRe

]
?

[
fRein

f Imin

]
.

The complex steerable kernel (B.37) is then given by

k(φ) = wRe

[
cos ((m 9 n)φ) 9 sin ((m 9 n)φ)
sin ((m 9 n)φ) cos ((m 9 n)φ)

]
+ wIm

[
9 sin ((m 9 n)φ) 9 cos ((m 9 n)φ)

cos ((m 9 n)φ) 9 sin ((m 9 n)φ)

]

= wRe ψ ((m− n)φ) + wIm ψ

(
(m− n)φ+ π

2

)
(B.38)

While this implementation models the complex Harmonic Networks faithfully in real
space, it does not utilize the complete SO(2)-steerable kernel space when the real
feature fields are interpreted as fields transforming under the real irreps ψRk as done
in our work. More specifically, the kernel space used in (B.38) is only 2-dimensional
while our basis (B.12) for the same case is 4-dimensional. The additional solutions
with frequency m+ n are missing.

3This establishes an isomorphism between ψC
k (θ) and ψR

|k|(θ) depending on the sign of k.
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The lower dimensionality of the complex solution space can be understood by
analyzing the relationship between SO(2)’s real and complex irreps. On the complex
field, the real irreps become reducible and decomposes into two 1-dimensional
complex irreps with opposite frequencies:

ψRk (θ) = 1√
2

[
1 −i
−i 1

] [
eikθ 0
0 e−ikθ

]
1√
2

[
1 i

i 1

]

Indeed, SO(2) has only half as many real irreps as complex ones since positive
and negative frequencies are conjugated to each other, i.e. they are equivalent
up to a change of basis: ψRk (θ) = ξ(−1)ψR−k(θ)ξ(−1). It follows that a real valued
implementation of a complex ψCk fields as a 2-dimensional ψRk fields implicitly adds
a complex ψC−k field. The intertwiners between two real fields of type ψRn and ψRm
therefore do not only include the single complex intertwiner between complex
fields of type ψCn and ψCm, but four complex intertwiners between fields of type ψC±n
and ψC±m. The real parts of these intertwiners correspond to our four dimensional
solution space.

In conclusion, [48] indeed found the complete solution on the complex field. How-
ever, by implementing the network on the real field, negative frequencies are implic-
itly added to the feature fields which allows for our larger basis (B.12) of steerable
kernels to be used without adding an overhead.
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CAlternative approaches to
compute kernel bases and their
complexities

The main challenge of building steerable CNNs is to find the space of solutions of
the kernel space constraint in Eq. 3.9. Several recent works tackle this problem for
the very specific case of features which transform under irreducible representations
of SE(3) ∼= (R3,+) o SO(3). The strategy followed in [42, 25, 26, 1] is based on
well known analytical solutions and does not generalize to arbitrary representations.
In contrast, [44] present a numerical algorithm to solve the kernel space constraint.
While this algorithm was only applied to solve the constraints for irreps, it generalizes
to arbitrary representations. However, the computational complexity of the algorithm
scales unfavorably in comparison to the approach proposed in this work. We will
in the following review the kernel space solution algorithm of [44] for general
representations and discuss its complexity in comparison to our approach.

The algorithm proposed in [44] is considering the same kernel space constraint

k(hx) = ρout(h)k(x)ρ−1
in (h) ∀h ∈ H

as in this work. By vectorizing the kernel the constraint can be brought in the form

vec(k) (hx) =
(
ρout ⊗

(
ρ−1

in
)T) (h) vec(k) (x)

= (ρout ⊗ ρin) (h) vec(k) (x) ,

where the second step assumes the input representation to be unitary, that is, to
satisfy ρ−1

in = ρTin. A Clebsch-Gordan decomposition, i.e. a decomposition of the
tensor product representation into a direct sum of irreps ψj of H, then yields1

vec(k) (hx) = Q−1
(⊕

J∈J
ψJ
)
(h)Q vec(k) (x)

Through a change of variables η(x) := Q vec(k)(x) this simplifies to

η(hx) =
(⊕

J∈J
ψJ
)
(h)η(x)

1For the irreps of SO(3) it is well known that J = {|j − l|, . . . , j + l} and |J | = 2 min(j, l) + 1.
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which, in turn, decomposes into |J | independent constraints

ηJ(hx) = ψJ(h)ηJ(x) .

Each of these constraints can be solved independently to find a basis for each ηJ .
The kernel basis is then found by inverting the change of basis and the vectorization,
i.e. by computing k(x) = unvec

(
Q−1η(x)

)
.

For the case that ρin = ψj and ρout = ψl are Wigner D-matrices, i.e. irreps of SO(3),
the change of basis Q is given by the Clebsch-Gordan coefficients of SO(3). These
well known solutions were used in [42, 25, 26, 1] to build the basis of steerable
kernels. Conversely, the authors of [44] solve for the change of basis Q numerically.
Given arbitrary unitary representations ρin and ρout the numerical algorithm solves
for the change of basis in

(
ρin ⊗ ρout

)
(h) = Q−1

⊕
J∈J

ψJ(h)

Q ∀h ∈ H

⇔ 0 = Q
(
ρin ⊗ ρout

)
(h) −

⊕
J∈J

ψJ(h)

Q ∀h ∈ H .

This linear constraint on Q, which is a specific instance of the Sylvester equation,
can be solved by vectorizing Q, i.e.[

I ⊗
(
ρin ⊗ ρout

)
(h) −

(⊕
J∈J

ψJ
)
(h)⊗ I

]
vec(Q) = 0 ∀h ∈ H ,

where I is the identity matrix on Rdim(ρin⊗ρout) = Rdim(ρin) dim(ρout) and vec(Q) ∈
Rdim(ρin)2 dim(ρout)2

. In principle there is one Sylvester equation for each group element
h ∈ H, however, it is sufficient to consider the generators of H only, since the
solutions found for the generators will automatically hold for all group elements.
One can therefore stack the matrices

[
I ⊗

(
ρin ⊗ ρout

)
(h)−

(⊕
J∈J ψJ

)
(h)⊗ I

]
for

the generators of H into a bigger matrix and solve for Q as the null space of this
stacked matrix. The linearly independent solutions QJ in the null space correspond
to the Clebsch-Gordan coefficients for J ∈ J .

This approach does not rely on the analytical Clebsch-Gordan coefficients, which
are only known for specific groups and representations, and therefore works for
any choice of representations. However, applying it naively to large representations
can be extremely expensive. Specifically, computing the null space to solve the
(stacked) Sylvester equation for H generators of h via a SVD, as done in [44], scales
as O

(
dim(ρin)6 dim(ρout)6H

)
. This is the case since the matrix which is multiply-

ing vec(Q) is of shape dim(ρin)2 dim(ρout)2H× dim(ρin)2 dim(ρout)2. Moreover, the
change of basis matrix Q itself has shape dim(ρin) dim(ρout)× dim(ρin) dim(ρout)
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which implies that the change of variables2 from η to k has complexity
O
(

dim(ρin)2 dim(ρout)2). In [44], the authors only use irreducible representations
which are relatively small such that the bad complexity of the algorithm is negligi-
ble.

In comparison, the algorithm proposed in this work is based on an individual decom-
position of the representations ρin and ρout into irreps and leverages the analytically
derived kernel space solutions between the irreps of H ≤ O(2). The independent
decomposition of the input and output representations leads to a complexity of only
O
((

dim(ρin)6 + dim(ρin)6)H). We further apply the input and output changes of
basis Qin and Qout independently to the irreps kernel solutions κij which leads to
a complexity of O

(
dim(ρin) dim(ρout)2 + dim(ρout) dim(ρin)2). The improved com-

plexity of our implementation makes working with large representations as used in
this work, for instance dim(ρD20

reg ) = 40, possible.

2No inversion from Q to Q−1 is necessary if the Sylvester equation is solved directly for Q−1.
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DAn intuition for quotient
representations

Recall the definition of quotient representation ρ
H/K
quot in Def. 24. A vector v in

its representation space can be expressed as v =
∑
hK∈H/K vhKehK . Then, its

coefficients can be interpreted as a scalar function over H/K as

v : H/K → R, hK 7→ vhK

or, equivalently, as a scalar function over H by extension over K:

v : H → R, h 7→ vhK .

Therefore, a feature vector transforming according to ρH/Kquot can be interpreted as a
feature map overH, constrained to be constant along itsK component. In the special
case K = {e}, the feature vector becomes an unconstrained feature map over H.

In our experiments, we used quotient representations of the form ρ
CN/CM
quot with

CM ≤ CN to define the feature types of the models in rows 11-15 of Tab. 5.1 and in
Tab. 5.3. Such field types can encode features which are simultaneously invariant
with respect to the subgroup CM but equivariant to CN . In particular, each of the
N/M coefficients in a ρCN/CM

quot -field detects a different orientation of a CM -invariant
pattern. For instance, if CM = C2 (and therefore N even), a ρCN/C2

quot -field contains
N/2 coefficients which are invariant to rotations by π but which permute under
rotations by p2π

N , with p ∈ {0, . . . , N2 −1} ∼= CN /C2. Such feature field can therefore
learn patterns which are symmetric to rotations by π like lines, e.g. for N = 16

−, −, −, − , − , −, −and −.

As another example, consider CM = C4; in this case, the feature field encodes
patterns which are invariant to π

2 rotations. For instance, for N = 8, the features can
detect

+ and + ,

or, for N = 16:
+, +, + and + .
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Finally, in the special case CM = C1 = {e} is the trivial group, one recovers the
regular representation ρCN

reg of CN . A ρCN
reg -field can indeed encode arbitrary patterns

in N orientations, e.g. for N = 8:

o, o, o , o, o

,
o
,

o

and o .

Therefore, a ρCN
red-field is always more expressive than any ρCN/CM

quot -field and a ρCN/CM
quot -

field can always be embedded in a ρCN
red-field. However, if a pattern intrinsically has

CM symmetries, a ρCN
red-field stores many redundant coefficients. For instance, if

CM = C4 and CN = C16, a ρCN
red-field uses a different coefficient for each of the

following patterns:
×, ×, × , ×,

×

,
×
,

×

and × .

In general, a ρCN
red-field uses M times more coefficients to store a CM -symmetric

pattern than a ρCN/CM
quot -field.

This suggests that the use of quotient representations can reduce the number of
channels in a feature field. This can be used to both reduce the memory and com-
putational cost of a model or to introduce more independent fields in the feature
type of a layer without increasing its number of channels, potentially increasing its
expressiveness. However, notice that a ρCN/CM

quot -field reduces the number of coeffi-
cient stored by enforcing a particular symmetry in the features. Such assumption
corresponds to a strong inductive bias in the model which can be useful if it matches
the actual data but could harm performance by reducing the expressiveness of the
model if non CM -symmetric patterns are important to solve the task.

In the experiments, we mainly utilized quotient representation invariant to C2 and
C4, thereby assuming the symmetric patterns like | or +, which we believed being
the most frequent in MNIST. In order to avoid imposing a too strong restriction, we
combined multiple different quotient representations, including regular represen-
tation and trivial representations, in the feature types. The model with quotient
fields 5ρreg⊕ 2ρC16/C2

quot ⊕ 2ρC16/C4
quot ⊕ 4ψ0 of C16 obtains marginally better accuracy than

the purely regular model with the same number of parameters on MNIST rot, see
Tab. 5.3. However, in the experiments conducted with the smaller architecture in
Tab. 5.1, we did not find improvements by using quotient fields. It is possible that
this is a consequence of a non-optimal design of the field type. Indeed, the space of
possible quotient representations and their multiplicities is considerably large and
may require a more extensive search to find optimal combinations. The use of neural
architecture search methods to explore these combinations is left as future work. For
this reason, we suggest to use regular features as a default design.

We want to draw attention to the fact that the case described above is a very
special case as K = CM /H = CN is a normal subgroup. In general, if K / H,
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the left and right cosets are identical i.e. hK = Kh ∀h ∈ H and, therefore,
k(hK) = K(kh) = Kh = hK ∀k ∈ K. Therefore, the action of ρH/Kquot on a vector
v =

∑
hK vhKehK simplifies to

ρ
H/K
quot (k) v =

∑
hK

vhKρ
H/K
quot (k) ehK

=
∑
hK

vhKekhK

=
∑
hK

vhKehK = v

which means v is invariant to K. This does not generally hold if K is not a normal
subgroup, where the action of k ∈ K can still induce a permutation of the |H : K|
axes. Consider for example quotient representation ρDN/({±1},∗)

quot , where ({±1}, ∗) is
not a normal subgroup of DN . Then, one has the following action of an element
s ∈ ({±1}, ∗):

ρ
DN/({±1},∗)
quot (s) er({±1},∗) = esr({±1},∗) =

er({±1},∗) for s = +1

er−1s({±1},∗) = er−1({±1},∗) for s = −1

where r ∈ CN is a representative of the coset r({±1}, ∗) ∈ DN /({±1}, ∗).

Nevertheless, ρH/Kquot still enforces a certain symmetry with respect to K in the model.
For instance, a ρHtriv to ρ

H/K
quot steerable convolution consists of |H : K| kernels

{R(hK).κ | hK ∈ H/K} obtained transforming a K-invariant kernel κ.
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EAdditional information on the
training setup

layer output fields

conv block 7× 7 (pad 1) 16
conv block 5× 5 (pad 2) 24
max pooling 2× 2 24
conv block 5× 5 (pad 2) 32
conv block 5× 5 (pad 2) 32
max pooling 2× 2 32
conv block 5× 5 (pad 2) 48
conv block 5× 5 64
invariant projection 64
global average pooling 64
fully connected 64
fully connected + softmax 10

Tab. E.1.: Basic model architecture
from which all models for
the MNIST benchmarks in
Tab. 5.1 and 5.2 are being de-
rived. Each convolution block
includes a convolution layer,
batch-normalization and a
nonlinearity. The first fully
connected layer is followed
by batch-normalization and
ELU. The width of each layer
is expressed as the number of
fields of a regular C16 model
with approximately the same
number of parameters.

layer output fields

conv block 9× 9 24
conv block 7× 7 (pad 3) 32
max pooling 2× 2 32
conv block 7× 7 (pad 3) 36
conv block 7× 7 (pad 3) 36
max pooling 2× 2 36
conv block 7× 7 (pad 3) 64
conv block 5× 5 96
invariant projection 96
global average pooling 96
fully connected 96
fully connected 96
fully connected + softmax 10

Tab. E.2.: Model architecture for the
final MNIST-rot experiments
(replicated from [45]). Each
fully connected layer follows
a dropout layer with p =
0.3; the first two fully con-
nected layers are followed by
batch normalization and ELU.
The width of each layer is ex-
pressed in terms of regular
feature fields of a C16 model.

E.1 Benchmarking on transformed MNIST
datasets

Each model reported in Sec. 5.1, 5.2 and 5.3 is derived from the architecture reported
in Tab. E.1. The width of each model’s layers is thereby scaled such that the total
number of parameters is matched and the relative width of layers coincides with
that reported in Tab. E.1. Training is performed with a batch size of 64 samples,
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using the Adam optimizer [24]. The learning rate is initialized to 10−3 and decayed
exponentially by a factor of 0.8 per epoch, starting after a burn in phase of 10
epochs. We train each model for 30 epochs and test the model which performed
best on the validation set. A weight decay of 10−7 is being used for all convolution
layers and the first fully connected layer. In all experiments, we build steerable
bases with Gaussian radial profiles of width σ = 0.6 for all except the outermost
ring where we use σ = 0.4. We apply a strong band-limiting policy which permits
frequencies up to 0, 2, 2 for radii 0, 1, 2 in a 5 × 5 kernel and up to 0, 2, 3, 2 for
radii 0, 1, 2, 3 in a 7× 7 kernel. The strong cutoff in the rings of maximal radius is
motivated by our empirical observation that these rings introduce a relatively high
equivariance error for higher frequencies. This is the case since the outermost ring
ranges out of the sampled kernel support. During training, data augmentation with
continuous rotations and reflections is performed (if these are present in the dataset)
to not disadvantage non-equivariant models. In the models using group restriction,
the restriction operation is applied after the convolution layers but before batch
normalization and non-linearities.

E.2 Competitive runs on MNIST rot

In Tab. 5.3 we report the performances of some of our best models. Our experiments
are based on the best performing, C16-equivariant model of [45] which defined the
state of the art on rotated MNIST at the time of writing. We replicate their model
architecture, summarized in Tab. E.2, though our models have a different frequency
band-limit and width σ for the Gaussian radial profiles as discussed in the previous
subsection. As before, the table reports the width of each layer in terms of number
of fields in the C16 regular model.

As commonly done, we train our final models on the 10000 + 2000 training and
validation samples. Training is performed for 40 epochs with an initial learning
rate 0.015, which is being decayed by a factor of 0.8, starting after 15 epochs. As
before, we use the Adam optimizer with a batch size of 64, this time using L1 and
L2 regularization with a weight of 10−7. The fully connected layers are additionally
regularized using dropout with a probability of p = 0.3. We are again using train
time augmentation.

E.3 CIFAR experiments

The equivariant models used in the experiments on CIFAR-10 and CIFAR-100 are
adapted from the original WideResNet models by replacing conventional with G-
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steerable convolutions and scaling the number of feature fields such that the total
number of parameters is preserved. For blocks which are equivariant under D8 or
C8 we use 5× 5 kernels instead of 3× 3 kernels to allow for higher frequencies. All
models use regular feature fields in all but the final convolution layer, which maps
to a scalar field (conv2triv) to produce invariant predictions. We use a frequency
cut-off of 3 times the ring’s radius, e.g. 0, 3, 6 for rings of radii 0, 1, 2. These higher
bandlimits in comparison to the MNIST experiments are motivated by the fact that
the corresponding bases introduce small discretization errors, which is no problem
for the classification of natural images. In the contrary, this leads to the models
having a strong bias towards being equivariant, but might allow them to break
equivariance if necessary. The widths of the bases’ rings is chosen to be σ = 0.45 in
all rings.

The training process is the same as used for WideResNets: we train for 200 epochs
with a batch size of 128. We optimize the model with SGD, using an initial learning
rate of 0.1, momentum 0.9 and a weight decay of 5·10−4. The learning rate is decayed
by a factor of 0.2 every 60 epochs. We perform a standard data augmentation with
random crops, horizontal flips and normalization. No CutOut is done during the
normal experiments but it is used in the AutoAugment policies.

E.4 STL-10 experiments

The models for our STL-10 experiments are adapted from [16]. However, according
to an issue1 in the authors’ GitHub repository, the publication states some model
parameters and the training setup wrongly. Our adaptations are therefore based on
the setting reported on GitHub. Specifically, we use patches of 60 × 60 pixels for
cutout and the stride of the first convolution layer in the first block is 2 instead of
1. Moreover, we normalize input features using CIFAR-10 statistics. Though these
statistics are very close to the statistics of STL-10, they might, as the authors of [16]
suggest, cause non-negligible changes in performance because of the small training
set size of STL-10.

As before, regular feature fields are used throughout the whole model except for
the last convolution layer which maps to trivial fields. In the small model, which
does not preserve the number of parameters but the number of channels, we still
scale up the number of output channels of the very first convolution layer (before
the first residual block). As the first convolution layer originally has 16 output
channels and our model is initially equivariant to D8 (whose regular representation
spans 16 channels), the first convolution layer would only be able to learn 1 single

1https://github.com/uoguelph-mlrg/Cutout/issues/2
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independent filter (repeated 16 times, rotated and reflected). Hence, we increase
the number of output channels of the first convolution layer by the square root of
the group size (

√
16 = 4) leading to 4 · 16 = 64 channels, i.e. 64/16 = 4 regular

fields. We use a ring width of σ = 0.6 for the kernel basis except for the outermost
ring where we use σ = 0.4 and use a frequency cut-off factor of 3 for the rings’ radii,
i.e. cutoffs of 0, 3, 6, . . . .

We are again exactly replicating the training process as reported in the publica-
tion [16]. Only the labeled subset of the training set is used, that is, the 100000
unlabeled training images are discarded. Training is performed for 1000 epochs
with a batch size of 128, using SGD with Nesterov momentum of 0.9 and weight
decay of 5 · 10−4. The learning rate is initialized to 0.1 and decayed by a factor of 5
at 300, 400, 600 and 800 epochs. During training, we perform data augmentation
by zero-padding with 12 pixels and randomly cropping patches of 96 × 96 pixels,
mirroring them horizontally and applying CutOut.

In the data ablation study, reported in Figure 5.4, we use the same models and
training procedure as in the main experiment on the full STL-10 dataset. For every
single run, we generate new datasets by mixing the original training, validation and
test set and sample reduced datasets such that all classes are balanced. The results
are averaged over 4 runs on each of the considered training set sizes of 250, 500,
1000, 2000 or 4000. The validation and test sets contain 1000 and 8000 images,
which are re-sampled in each run as well.
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FAdditional information on the irrep
models

SO(2) models We experiment with some variants (rows 37-44) of the Harmonic
Network model in row 30 of Tab. 5.1, varying in either the non-linearity or the
invariant map applied. All of these models are therefore to be analyzed relative to
this baseline. First, we try to use squashing nonlinearities [21] (row 37) instead
of norm-ReLUs on each non-trivial irrep. This variant performs consistently worse
than the original model. In the baseline variant, we generate invariant features via a
convolution to scalar fields in the last layer (conv2triv). This, however, reduces the
utilization of high frequency irrep fields in the penultimate layer. The reason for this
is that the kernel space for mappings from high frequency- to scalar fields consists of
kernels of a high angular frequency, which will be cut off by our bandlimiting. To
overcome this problem, we propose to instead compute the norms of all non-trivial
fields to produce invariant features. This enables us to use all irreps in the output
of the last convolution layer. However, we find that combining invariant norm
mappings with norm-ReLUs does not improve on the baseline model, see row 38.
In row 39 we consider a variant which applies norm-ReLUs on the direct sum of
multiple non-trivial irrep fields, each with multiplicity 1, together (shared norm-
ReLU), while the scalar fields are still being acted on by ELUs. This is legitimate since
the direct sum of unitary representations is itself unitary. After the last convolution
layer, the invariant projection preserves the trivial fields but computes the norm
of each composed field. This model significantly outperforms all previous variants
on all datasets. The model in row 40 additionally merges the scalar fields to such
combined fields instead of treating them independently. This architecture performs
significantly worse than the previous variants.

We further explore four different variations which are applying gated nonlinearities
(rows 41-44). These models distinguish from each other by 1) their mapping to
invariant features and 2) whether the gate is being applied to each non-trivial field
independently or being shared between multiple non-trivial fields. We find that the
second choice, i.e. sharing gates, does not significantly affect the performances (row
41 vs. 42 and 43 vs. 44). However, mapping to invariant features by taking the
norm of all non-trivial fields performs consistently better than applying conv2triv.
Overall, gated nonlinearities perform significantly better than any other choice of
nonlinearity on the tested SO(2) irrep models.
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O(2) models Here we will give more details on the O(2)-specific operations which
we introduce to improve the performance of the O(2)-equivariant models, reported
in rows 45-57 of Tab. 5.1.

• O(2)-conv2triv: As invariant map of the O(2) irrep models in rows 46-49 and
54 we are designing a last convolution layer which is mapping to an output
representation ρout = ψ

O(2)
0,0 ⊕ ψ

O(2)
1,0 , that is, to scalar fields f0,0 and sign-flip

fields f1,0 in equal proportions. Since the latter are not invariant under
reflections, we are in addition taking their absolute value. The resulting,
invariant output features are then multiple fields f0,0⊕|f1,0|. The motivation
for not convolving to trivial representations of O(2) directly via conv2triv is
that the steerable kernel space for mappings between irreps of O(2) does
not allow for mapping between ψO(2)

0,0 and ψO(2)
1,0 (see Tab. B.2), which would

lead to dead neurons.

The models in rows 50-53, 56 and 57 operate on IndO(2)
SO(2) ψ

SO(2)
k -fields whose repre-

sentations are induced from the irreps of SO(2). Per definition, this representation
acts on feature vectors f in Rdim(ψSO(2)

k
)⊗R|O(2):SO(2)|, which we treat in the follow-

ing as functions f : O(2)/ SO(2)→ Rdim(ψSO(2)
k

). We further identify the coset sSO(2)
in the quotient space O(2)/ SO(2) by its representative R(sSO(2)) := s ∈ ({±1}, ∗)
in the reflection group. Eq. 2.5 defines the action of the induced representation on a
feature vector by([

IndO(2)
SO(2) ψ

SO(2)
k

]
(r̃s̃) f

)
(s SO(2)) := ψ

SO(2)
k

(
h
(
r̃s̃R((r̃s̃)−1s SO(2))

))
f
(
(r̃s̃)−1s SO(2)

)
= ψ

SO(2)
k

(
h(r̃s)

)
f
(
s̃s SO(2)

)

=


ψ

SO(2)
k

(
r̃) f

(
s̃s SO(2)

)
for s = +1

ψ
SO(2)
k

(
r̃−1) f

(
s̃s SO(2)

)
for s = −1 ,

where we used Eq. 2.3 to compute

h(r̃s) := R
(
r̃sSO(2)

)−1
r̃s = s−1r̃s =

r̃ for s = +1

r̃−1 for s = −1 .
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Intuitively, this action describes a permutation of the subfields (indexed by s) via the
reflection s̃ and a rotation of the subfields by r̃ and r̃−1, respectively. Specifically, for
k = 0, the induced representation is for all r̃ instantiated by

[
IndO(2)

SO(2) ψ
SO(2)
0

]
(r̃s̃) =



1 0

0 1

 for s̃ = +1
0 1

1 0

 for s̃ = −1 ,

(F.1)

that is, it coincides with the regular representation of the reflection group. Similarly,
for k > 0, it is for all r̃ given by the 4× 4 matrices

[
IndO(2)

SO(2) ψ
SO(2)
k>0

]
(r̃s̃) =




ψ

SO(2)
k>0 (r̃) 0

0 ψ
SO(2)
k>0 (−r̃)

 for s̃ = +1


0 ψ

SO(2)
k>0 (r̃)

ψ
SO(2)
k>0 (−r̃) 0

 for s̃ = −1 .

We adapt the conv2triv and norm invariant maps, as well as the norm-ReLU and the
gated nonlinearities to operate on IndO(2)

SO(2)-fields as follows:

• Ind-conv2triv: Instead of applying O(2)-conv2triv to compute invariant features,
we apply convolutions to IndO(2)

SO(2) ψ
SO(2)
0 -fields which are invariant under

rotations but behave like regular ({±1}, ∗)-fields under reflections. These
fields are subsequently mapped to a scalar field via G-pooling, i.e. by taking
the maximal response over the two subfields.

• Ind-norm: An alternative invariant map is defined by computing the norms of
the subfields of each final IndO(2)

SO(2) ψ
SO(2)
k -field and applying G-pooling over

the result.

• Ind norm-ReLU: It would be possible to apply a norm-ReLU to a IndO(2)
SO(2) ψ

SO(2)
k -

field for k > 0 as a whole, that is, to compute the norm of both subfields
together. Instead, we apply two individual norm-ReLUs to the subfields.
Since the fields permute under reflections, we need to choose the bias
parameter of the two norm-ReLUs to be equal.
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• Ind gate: Similarly, we could apply a single gate to each IndO(2)
SO(2) ψ

SO(2)
k -field.

However, we apply an individual gate to each subfield. In this case it is
necessary that the gates permute together with the IndO(2)

SO(2) ψ
SO(2)
k -fields

to ensure equivariance. This is achieved by computing the gates from
IndO(2)

SO(2) ψ
SO(2)
0 -fields, which contain two permuting scalar fields.

Empirically we find that IndO(2)
SO(2) models perform much better than pure irrep models,

despite both of them being equivalent up to a change of basis. In particular, the
induced representations decompose for some change of basis matrices Q0 and Q>0

into:

IndO(2)
SO(2) ψ

SO(2)
0 = Q0

[
ψ

O(2)
0,0 ⊕ ψO(2)

1,0

]
Q−1

0

IndO(2)
SO(2) ψ

SO(2)
k>0 = Q>0

[
ψ

O(2)
1,k>0 ⊕ ψ

O(2)
1,k>0

]
Q−1
>0

The difference between both bases is that the induced representations disentangle
the action of reflections into a permutation, while the direct sum of irreps is modeling
reflections in each of its sub-vectorfields independently as an inversion of the vector
direction and rotation orientation. Note the analogy to the better performance of
regular representations in comparison to a direct sum of the respective irreps.
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GEfficient Decomposition of
Induced Representations

For a finite group G, if the G-representation to be decomposed is the induced
representation from an irreducible representation ψ of a subgroup H ≤ G, i.e.
IndGH ψ, a more efficient algorithm can be used. [36] uses induced representations to
derive an efficient algorithm to compute the inverse Fourier transform for complex
functions over finite groups and includes a method to build the change of basis matrix
of an induced representation. Though [36] assumes complex-valued representations,
a very similar algorithm can be derived on the real field. Here, we will first repeat
the derivations in [36] to obtain an abstract description of the change of basis matrix
and, then, we will discuss how this result can be adapted to real representations and
implemented in practice.

Notations In this section, we assume a generic finite group G and a subgroup
H < G. We will denote an irrep of G with ρ and an irrep of H with ψ. Without loss
of generality, we assume all irreps are unitary representations, i.e. ρ(g)−1 = ρ(g)†,
where † is the conjugate transpose. Given an irrep ψ of H, our goal is to decompose
the G-representation IndGH ψ into a direct sum of irreducible representations of G,
i.e.:

IndGH ψ = D−1
(⊕
i∈I

ρi

)
D ,

where {ρi}i are (possibly equal) irreducible representations of G.

The irreducible representation ψ : H → GL(W ) acts on a vector space W of size dψ.
Therefore, we can choose a basis

{e1, e2, . . . ek, . . . , edψ}

of W and express the matrix representations of H on this basis. We call IndGHW , or
shortly IndW , the vector space the representation IndGH ψ acts on. Assuming a set
of representative elements

R = {r1, . . . , rl, . . . , rL}
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of the L = [G : H] cosets in G/H, the matrix representations of G can be naturally
expressed with respect to the following basis of IndGHW :

{r1 ⊗ e1, r1 ⊗ e2, . . . , r1 ⊗ edψ , . . . , rL ⊗ e1, . . . , rK ⊗ edψ} .

In such basis, the matrix representations of G are in the form presented in Sec. 2.4,
i.e. they are block matrices with L× L blocks, each of size dψ × dψ, with each row
and column contains only one non-zero block.

As before, we can use the orthogonality of the characters of the irreducible represen-
tations in Thm. 5 to find the multiplicities of the irreps of G in IndGH ψ. We can
assume we already know IndGH ψ ∼=

⊕
i ρi. Denoting the direct sum representation

as P =
⊕
i ρi, we only need to find the matrix D such that P = D IndGH ψD−1.

We call V the vector space P acts on. Note that V ∼= IndW , but V is associated
with a basis such that the matrix representations of Ind ψ are the block diagonal
(P = D IndGH ψD−1). Therefore, the problem is that of finding a linear map which
commutes with the two representations (an intertwiner), i.e. a matrix D such that
D
(
IndGH ψ

)
= PD.

Given two representations ρ1 and ρ2 of a group G on the vector spaces V1 and V2,
the set of all linear maps between V1 and V2 which commute with respect to their
respective G-actions (Def. 28) is

HomG (V1, V2) = {A | ρ2(g)A = Aρ1(g) ∀g ∈ G} .

An element φ ∈ HomG (V1, V2) is a linear map φ : V1 → V2. Once the bases of V1 and
V2 are chosen, this set corresponds to the set of all matrices which commute with
the two representations. Then, D ∈ HomG (IndW,V ); therefore, we will now study
this set.

Because P =
⊕
i ρi, its vector space (and its basis) can also be decomposed in a

direct sum V =
⊕
i∈I Vi. It follows that:

HomG (IndW,V ) = HomG

(
IndW,

⊕
i∈I

Vi

)
∼=
⊕
i∈I

HomG (IndW,Vi) (G.1)

which means that the matrices of the linear maps between V and IndW can be
decomposed in |I| blocks {Di | i ∈ I}, where the i-th block is an intertwiner between
Indψ and ρi. The block Di contains the coefficient of a map Φi ∈ HomG (IndW,Vi).
This enables us to focus only on one of these blocks, i.e. on one of the irreps ρi.

We can now use the following theorem [15]:
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Theorem 10: Frobenius Reciprocity

Let G be a finite group, H ≤ G a subgroup and {r1, . . . , rK} (with r1 = e) a
complete set of coset representatives for G/H. Let ψ be an H-representation
in W and ρ be a G-representation in V .
Then, there is a canonical isomorphism such that:

HomH (W,ResV ) ∼= HomG (IndW,V )

where ResV is the vector space V considered as an H-space, i.e. as the vector
space of the restricted representation ResGH ψ.
This canonical isomorphism maps an element Φ ∈ HomG (IndW,V ) to an
element φ ∈ HomH (W,ResV ) defined as:

φ : W → ResV, φ(w) := Φ(e⊗ w) .

Similarly, an element φ ∈ HomH (W,ResV ) is mapped to an element Φ ∈
HomG (IndW,V ) as:

Φ : IndW → V, Φ(rl ⊗ w) := ρ(rl) φ(w) .

This allows us to study the set HomH (W,ResVi) instead of HomG (IndW,Vi).
Splitting the block Di horizontally into L dψ × dψ blocks Di(r1 = e), . . . , Di(rL),
HomH (W,ResVi) is the set of all possible matrices Di(e) in the first dψ columns of
Di, i.e. the block of D which maps the coset associated with the identity r1 = e to
the irrep ρi. Once the maps in HomH (W,Res Vi) are found, we can use the canonical
isomorphism in Thm. 10 to compute all the maps in HomG (IndW,Vi), i.e. we can
build the other blocks {Di(r)}r∈R from Di(e).

The result obtained in the last paragraph allows us to reduce the study to ResGH ρi,
the restriction to H of the irreducible representation ρi of G. We assume that we
already know its decomposition ResGH ρi = Ai

⊕
j∈Ji ψ

i
jA
−1
i and that A−1

i = A† is
unitary. Without loss of generality, we can momentarily ignore the change of basis
Ai and consider the space Ṽi associated with the representation A−1

i ρiAi. Note that
the vector spaces Ṽi ∼= Vi are isomorphic and only differ for the change of basis Ai.
Similarly, HomH (W,Res Vi) ∼= HomH

(
W,Res Ṽi

)
, with isomorphism

HomH

(
W,Res Ṽi

)
→ HomH (W,Res Vi) , φ 7→ Aiφ

and
HomH (W,Res Vi)→ HomH

(
W,Res Ṽi

)
, φ 7→ A−1

i φ .

If Di(e) ∈ HomH (W,Res Vi), using the isomorphism above, we define the block
D̃i(e) = A−1

i Di(e) ∈ HomH

(
W,Res Ṽi

)
. We will re-introduce the change of basis
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Ai later in the final change of basis D. Then, the vector space Res Ṽi (and its
basis) decomposes into a direct sum: Res Ṽi =

⊕Ji
j=1W

i
j . Similarly, the set of

homomorphisms can be decomposed as:

HomH

(
W,Res Ṽi

)
= HomH

W, Ji⊕
j=1

W i
j

 =
Ji⊕
j=1

HomH

(
W,W i

j

)
.

This means that the block D̃i(e) is itself composed by sub-blocks {Di
j(e)}j . We

can now use Schur’s Representation Lemma, which we introduced in Thm. 3. The
theorem implies that HomH

(
W,W i

j

)
contains only the null matrix (containing only

zeros) if ψij differs from ψ. We can therefore consider only those W i
j associated to

the irrep ψij = ψ. We will use the set J̄i = {j ∈ Ji|ψij = ψ} to index them.

Because of the block-diagonal structure of Res Ṽi, for j ∈ J̄i there is a subset of the
basis of Res Ṽi which forms a basis for W i

j . If {f i1, . . . , f idρi} is the basis of Res Ṽi,
we denote as {f ij,1, . . . , f ij,k, . . . , f ij,dψ} its subset which is a basis for W i

j . Given any

isomorphism φij ∈ HomH

(
W,W i

j

)
and the basis {e1, e2, . . . ek, . . . , edψ} of W , the

vectors {φij(e1), φij(e2), . . . φij(ek), . . . , φij(edψ)} are expressed in terms of the basis

{f ij,k}
dψ
k=1 and their coefficients form the columns of the block Di

j(e). Note that these
are dψ-dimensional vectors padded to dρi-dimensional vectors.

Then, the block D̃i(e) is the stack of the blocks {Di
j(e)}j and is the matrix represen-

tation of φ̃i ∈ HomH

(
W,Res Ṽi

)
which sends

ek → φ̃i(ek) :=
∑
j∈J̄i

φij(ek) .

We can now reintroduce the change of basis Ai so the block Di(e) = AiD̃i(e) is the
matrix representation of φi ∈ HomH (W,Res Vi) which sends

ek → φi(ek) := Aiφ̃i(ek) = Ai
∑
j∈J̄i

φij(ek) =
∑
j∈J̄i

Aiφ
i
j(ek) .

Then, using the canonical isomorphism described in Thm 10, the corresponding
element Φi ∈ HomG (IndW,Vi) sends

rl ⊗ ek → ρi(rl)φi(ek) = ρi(rl)
∑
j∈J̄i

Aiφ
i
j(ek) .

This means that the other blocks {Di(rl)}l in Di can be built as

Di(rl) = ρi(rl)Di(e) .

Finally, the whole matrix D can be built by stacking the blocks {Di}i∈I .
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G.1 Orthogonality

The previous construction completely defines the space HomG (IndW,V ) of matrices
which commute with the induced representation, i.e. the set

{
D
∣∣ D (IndGH ψ

)
= PD

}
.

However, this does not guarantee the invertibility of D. Furthermore, we want to
find a matrix which is not only invertible but also unitary (or orthonormal for real
representations). This can be done by choosing the blocks {Di

j(e)}i,j appropriately.

Recall that a matrix D is invertible if and only if its rows are linearly independent.
However, if an irrep ρ of G has multiplicity 2 in Ind ψ (i.e. ∃i1, i2 ∈ I s.t. ρi1 = ρi2 =
ρ) and we choose the same isomorphisms in both cases (i.e. Di1(e) = Di2(e)), the
matrix D will contain two identical rows (i.e. Di1(rl) = Di2(rl) ∀rl). We will now
show that it is always possible to choose two different isomorphisms φi1 and φi2
such that the rows of the resulting matrix will be orthogonal too. First of all, we can
make use of the following variant of Thm. 10:

Theorem 11: Frobenius Reciprocity (Character Theory)

Let G be a finite group, H ≤ G a subgroup. Let ψ be an H-representation in
W and ρ be a G-representation in V . Then:

< IndGH ψ, ρ >G=< ψ,ResGH ρ >H

where < ·, · >· denotes the inner product of the characters of the two repre-
sentations.

Complex representations For simplicity, we first assume representations over the
complex field C. Without loss of generality, we assume all representations to be
unitary, i.e. ρ(g−1) = ρ(g)−1 = ρ(g)†, where † is the conjugate transpose. In this
case, Thm. 11 together with Thm. 5 imply that the multiplicity of a G-irrep ρ in the
induced representation IndGH ψ is equal to the multiplicity of the H-irrep ψ in the
restricted representation ResGH ρ. Moreover, in the complex field, a stronger version
of Schur’s Representation Lemma than the one in Thm. 3 holds. The complex version
of the theorem was stated in Thm. 4. In our case, it implies that HomH

(
W,W i

j

)
is a

one-dimensional space and

∀j ∈ J̄i, ∃λij ∈ C s.t. φij = λijI .

Denoting the multiplicity of the irrep ρ in Ind ψ (or, equivalently, the multiplicity
of ψ in Res ρ) as M = |J̄i|, HomH (W,Res Vi) =

⊕
j∈J̄i HomH

(
W,W i

j

)
is an M -

dimensional space and it occurs M times in HomH (W,Res V ). Therefore, we can
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always choose different isomorphisms in HomH (W,Res V ) by setting all λij = 0
except for the m-th index in J̄i in the m-th occurrence of HomH (W,Res Vi).

We now show the orthogonality of the rows of D. Consider two different blocks
Di(e), Dj(e) ∈ {Di(e)}i∈I associated to the i-th and the j-th irreps ρi and ρj in
the irreps decomposition of Ind ψ = D

⊕
i∈I ρiD

−1. ρi and ρj are not necessarily
equivalent. Let’s now evaluated the inner product between all pairs of rows of D
associated with the i-th and j-th irreps i.e. between the rows of Di and those of Dj .
Recall that a block Di : IndW → Vi is composed by L blocks {Di(r) = ρi(r)Di(e) :
W → Vi}r∈R and that Di(e)ψ(h) = ρi(h)Di(e) ∀h ∈ H by definition. Then, we can
write:

O =DiD
†
j

=
∑
r∈R

ρi(r)Di(e)Dj(e)†ρj(r)†

= 1
|H|

∑
h∈H

∑
r∈R

ρi(r)Di(e)Dj(e)†ρj(r)†

= 1
|H|

∑
h∈H

∑
r∈R

ρi(r)Di(e)ψ(h)ψ(h)†Dj(e)†ρj(r)†

= 1
|H|

∑
h∈H

∑
r∈R

ρi(r)ρi(h)Di(e)Dj(e)†ρj(h)†ρj(r)†

= 1
|H|

∑
g∈G

ρi(g)Di(e)Dj(e)†ρj(g)†

(G.2)

Note that O commutes with ρi(g) and ρj(g) for any g ∈ G by construction, i.e.

Oρj(g) = ρi(g)O ∀g ∈ G

and, therefore, it is an intertwiner between ρj and ρi. Using Thm. 4, this implies that
O is the null matrix if ρi � ρj . Conversely, if ρi = ρj =: ρ, then it guarantees that

∃λ ∈ C s.t. O = λI

Now, because the trace operator is linear and invariant under conjugation

Tr(O) = Tr

 1
|H|

∑
g∈G

ρ(g)Di(e)Dj(e)†ρ(g)†


= 1
|H|

∑
g∈G

Tr
(
ρ(g)Di(e)Dj(e)†ρ(g)†

)
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recalling Di(e) = AiD̃i(e) and defining A := Ai = Aj:

= 1
|H|

∑
g∈G

Tr
(
ρ(g)AD̃i(e)D̃j(e)†A†ρ(g)†

)
= 1
|H|

∑
g∈G

Tr(D̃i(e)D̃j(e)†)

The matrix D̃iD̃
†
j is a dρ × dρ zero matrix with a block structure (according to the

decomposition of ρ into irreps of H) containing the dψ × dψ identity matrix in the
(i, j)-th block. If i 6= j, the identity is not appearing on the main diagonal and,
therefore, Tr(D̃iD̃

†
j) = 0. It follows that Tr(O) = 0 and, because O = λI, λ = 0, i.e.

O is the null matrix. Hence, the inner product between any pair of rows belonging to
different blocks is always zero and, so, different blocks are orthogonal. Conversely, if
i = j, D̃iD̃

†
j contains the dψ×dψ identity matrix in the main diagonal and, therefore,

Tr(O) > 0, i.e. O = λI with λ > 0. This implies that the rows within the same block
Di are orthogonal to each other Finally, by properly scaling the blocks Di(e), one
can achieve orthonormality.

Real field On the real field R the inner product of the characters can not be
directly interpreted as the multiplicity of the irreps and the space of isomorphisms
might be larger. Nevertheless, it turns out that these two concepts are very related.
Using Thm. 6, it is possible to show that < IndGH ψ, ρ >G= δρM , where M is the
multiplicity of ρ in IndGH ψ while δρ =< ρ, ρ >G∈ N+. Similarly, the following
relation holds: < ψ,Res ρ >H= δψN , where N is the multiplicity of ψ in ResGH ρ
while δψ =< ψ,ψ >H∈ N+. Using Thm. 11:

δρM = δψN

By decomposing a real irrep ψ in complex irreps, one can also show that < ψ,ψ >H

is equal to the dimensionality of the space HomH (ψ,ψ). It follows that the dimen-
sionality of HomH

(
W,W i

j

)
is equal to δψ.

Unfortunately, deriving an orthogonal change of basis is less straightforward than in
the complex case. We first need to introduce some properties of real representations.
It can be shown1 that any complex irreducible representation σ of a compact group
G occurs in one and only one real irreducible representation ρ, when the last is
interpreted as a complex representation. Moreover, every real irrep ρ of G can be
classified in one of three categories (types):

• real type: if ∃σ s.t. ρ ∼= σ ∼= σ, i.e. if it is isomorphic to a complex irrep σ

1http://www-math.mit.edu/~poonen/715/real_representations.pdf
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• complex type: if ∃σ � σ s.t. ρ ∼= σ ⊕ σ, i.e. if it decomposes as the direct sum
of two (non-equivalent) complex irreps σ and σ, which are the conjugated of
each other

• quaternionic type: if ∃σ ∼= σ s.t. ρ ∼= σ ⊕ σ ∼= σ ⊕ σ, i.e. if decomposes as
the direct sum of two copies of complex irreps σ, which is equivalent to its
conjugation σ

where · is the complex conjugate. For brevity, because no irrep of the groups
H ≤ O(2) have quaternionic type, we will ignore the last case. Without loss of
generality, we assume that real-type real irreps are expressed on a basis such that
their matrix representations have real coefficients and that σ = ρ (and, therefore,
σ = σ). Similarly, for any complex-type real irrep ρ, we can choose a basis such
that

ρ(g) =
[
Re (σ(g)) −Im (σ(g))
Im (σ(g)) Re (σ(g))

]
= Cdσ

[
σ(g) 0

0 σ(g)

]
C†dσ (G.3)

with

Cd = 1√
2

[
iId −iId
Id Id

]
(G.4)

where i is the imaginary unit, Id is the identity matrix of size d, † is the conjugate
transpose while Re (·) and Im (·) are the real and imaginary parts of their arguments.
We will often write C instead of Cd when the dimension d is clear from the other
matrices in the expression. As before, we study the space HomH (ψ,Res ρi) where
the block Di(e) lives. As in the complex case, if ρi 6= ρj , the space Hom (ρi, ρj)
contains only the null matrix and, therefore, using similar steps to those in Eq. (G.2),
one can show that the rows of Di and Dj are orthogonal. Here, however, when
ρi = ρj =: ρ, we need to consider four different cases, depending on whether ρ and
ψ are of real or complex types.

As earlier, we assume the restricted ρi decomposes as Res ρ = Ai
(⊕

j∈Ji ψ
i
j

)
A−1
i

and, so, HomH (ψ,Res ρi) ∼=
⊕
j∈J̄i HomH

(
ψ,ψij

)
, where J̄i ⊆ Ji contains the

indexes of the irreps ψij ∼= ψ.

ρi real, ψ real This case is identical to the case with complex irreps, so no further
analysis is necessary.

ρi real, ψ complex Assume ψ = C (η ⊕ η)C†, where η is a complex irrep of H.
Note that here δρ = 1 and δψ = 2, so M = 2N . Since ψ is a complex-type irrep,
HomH (ψ,ψ) ∼= HomH (η, η)⊕ HomH (η, η) in the complex field. Considering only
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homomorphisms whose matrix coefficients are real and expressing ψ as in Eq. (G.3),
HomH (ψ,ψ) contains matrices in the form λIdψ + ωS (λ, ω ∈ R), where

S =
[

0 Idη
−Idη 0

]

and Id is the d× d identity matrix. Note that Idψ and S together form an orthogonal
basis for HomH (ψ,ψ). We denote this basis with X = {Idψ ,S} and we will use X
to refer to one of its elements. In addition, if X1, X2 ∈ X , one can also show that
Tr(X1X

T
2 ) = δX1,X2 . Then, for each of the M occurrences of ρ in Ind ψ, we can

choose one of the N occurrences of ψ in Res ρ and one of the two orthogonal basis
elements of HomH (ψ,ψ): D̃im(e) is a zero dρ× dψ matrix containing Xm mod 2 ∈ X
in the rows corresponding to the bm/2c-th occurrence of ψ in the irreps decompo-
sition of Res ρ. We now need to show that this construction leads to orthonormal
rows in D. As before, we compare the rows associated with the m-th and the n-th
occurrence of ρi, i.e. the blocks Dim and Din . Again, we assume the decomposition
Res ρi = Ai

(⊕
j ψj

)
A−1
i , with A−1

i = ATi real-valued orthogonal matrix. Then,
Di(r) = ρi(r)AiD̃i(e). With similar steps as in the complex field:

O = DimD
T
in

=
∑
r∈R

ρ(r)AiD̃im(e)D̃in(e)TATi ρ(r)T

= 1
|H|

∑
g

ρ(g)AiD̃im(e)D̃in(e)TATi ρ(g)T

Because O commutes with ρ(g), O ∈ HomG (ρ, ρ) and, therefore, ∃λ ∈ R s.t. O = λI.
If bm/2c 6= bn/2c, Tr(O) = Tr(D̃im(e)D̃in(e)T ) = 0 and, so, O is the null matrix.
Otherwise, Tr(D̃im(e)D̃in(e)T ) = Tr(Xm mod 2X

T
n mod 2) = δn mod 2,n mod 2 = δn,m.

It follows that in general O = δn,mλI. Thus, Dim and Din always contain orthogonal
rows.

ρi complex, ψ real Assume ρi = C (σi ⊕ σi)C† and Res σi = Bi
(⊕

j∈Ji ηj
)
B†i ,

where σi � σi are complex irreps of G while ηj are complex irreps of H. Note
that it necessarily holds that Res σi = Res σi = Bi

(⊕
j∈Ji ηj

)
BT
i . Because ψ is

of real-type, there exists a complex η such that ψ = η = η. Here, δρ = 2 and
δψ = 1, so 2M = N . Indeed, using the decomposition of Res ρ in σi ⊕ σi and their
decompositions in terms of complex H-irreps, it follows that ψ occurs M times in σi
and M times in σi. Here, instead of decomposing Res ρi in terms of real irreps of H
as Res ρi = Ai

(⊕
j ψj

)
ATi , we consider its decomposition

Res ρi = C

[
Bi

Bi

] [⊕
j∈Ji ηj ⊕

j∈Ji ηj

] [
Bi

Bi

]†
C†
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in terms of the complex irreps of H. Analogously, we parametrize a block Di(e)
as Di(e) = C(B ⊕ B)D̃i(e) instead of Di(e) = AiD̃i(e). For the m-th occurrence

of ρi in Ind ψ, we set D̃im(e) =
[
Xm

Xm

]
∈ R2dσi×dψ , where Xm is a dσi × dψ zero

matrix containing the dψ × dψ identity in the rows corresponding to the m-th
occurrence of ψ = η in the complex irreps decomposition of Res σi. It follows that
Tr(XmX

T
n ) = δm,n. We can also verify that Dim(e) is always real valued; indeed

C(Bi ⊕Bi) = 1√
2

[
iI −iI
I I

] [
Bi

Bi

]
=
[
Re (Bi) −Im (Bi)
Im (Bi) Re (Bi)

]
︸ ︷︷ ︸

BR
i

C

and, therefore:

Dim(e) = C(Bi ⊕Bi)D̃im(e) = BRi C

[
Xm

Xm

]
= BRi

2√
2

[
0
Xm

]

We can now verify orthogonality as before.

O = DimD
T
in = DimD

†
in

= 1
|H|

∑
g

ρ(g)Dim(e)Din(e)†ρ(g)†

= 1
|H|

∑
g

C

[
σi(g)

σi(g)

]
C†Dim(e)Din(e)TC†

[
σi(g)

σi(g)

]†
C†

= 1
|H|

∑
g

C

[
σi(g)

σi(g)

] [
Bi

Bi

] [
Xm

Xm

] [
XT
n XT

n

] [Bi
Bi

]† [
σi(g)

σi(g)

]†
C†

= 1
|H|

C
∑
g

σi(g)BiXmX
T
nB
†
i σi(g)† σi(g)BiXmX

T
nB
†
iσi(g)†

σi(g)BiXmX
T
nB
†
i σi(g)† σi(g)BiXmX

T
nB
†
iσi(g)†

C†
= C

[
λI 0
0 λI

]
C†

Now, note that Tr(λI) = Tr(λI) ∝ Tr(XmX
T
n ) = δm,n. It follows that λ = λ ∈ R

and O = λδm,nI. Thus, the rows in Dim and Din are orthogonal to each other.

ρi complex, ψ complex Again, assume ρi = Cdσ (σi ⊕ σi)C†dσ , Res σi = Bi
(⊕

j∈Ji ηj
)
B†i

and ψ = Cdη(η ⊕ η)C†dη , with σi � σi complex irreps of G and η � η complex irreps
of H. Here, δρ = δψ = 2, so 2M = 2N . Hence, for the m-th occurrence of ρi, we
parametrize the block Dim as

Dim = Cdσ(B ⊕B)D̃imC
†
dη

with

D̃im =
[
Xm 0
0 Xm

]
∈ Rdρ×dψ
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where Xm is a dσ × dη zero matrix containing the identity in the rows correspoding
to the m-th occurrence of η in σ. Then

Dim = Cdσ(B ⊕B)D̃imC
†
dη

=
[
Re (B) −Im (B)
Im (B) Re (B)

]
︸ ︷︷ ︸

BR

CdσD̃imC
†
dη

= BR
1
2

[
iIdσ −iIdσ
Idσ Idσ

] [
Xm 0
0 Xm

] [
iIdη −iIdη
Idη Idη

]

= BR
[
Xm 0
0 Xm

]
= BRD̃im

which is a real-valued matrix. Note that Tr(XmX
T
n ) = dηδm,n. Then:

O = DimD
T
in = DimD

†
in

= 1
|H|

∑
g

ρ(g)Dim(e)Din(e)†ρ(g)†

= 1
|H|

∑
g

ρ(g)Cdσ(B ⊕B)D̃imC
†
dη
CdηD̃

T
in(B ⊕B)†C†dσρ(g)†

= 1
|H|

Cdσ
∑
g

[
σ(g)

σ(g)

]
(B ⊕B)

[
XmX

T
n

XmX
T
n

]
(B ⊕B)†

[
σ(g)

σ(g)

]†
C†dσ

= 1
|H|

Cdσ
∑
g

[
σ(g)BXmX

T
nB
†σ(g)†

σ(g)BXmX
T
nB
†
σ(g)†

]
C†dσ

= Cdσ

[
λIdσ

λIdσ

]
C†dσ

Using the properties of the trace, the following equalities need to hold Tr(λIdσ) =
Tr(λIdσ) = Tr(XmX

T
n ). Hence, λ = λ ∈ R and λ ∝ δm,n. It follows that ∃λ ∈ R s.t.

O = δm,nλI and that the rows of Dim and Din are othogonal.

Finally, by scaling each block {Di}i, one can normalize all the columns of the matrix
D, generating an orthonormal change of basis.

To validate our implementation, we perform an extensive numerical test, inducing
from and to a large number of subgroups of D32 and from SO(2) to O(2).
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Nomenclature

Groups

CN Cyclic Group of order N

DN Dihedral Group of order 2N

E(2) Euclidean Group

({±1}, ∗) Reflection Group

GL(2) General Linear Group of 2× 2 invertible matrices

GL(n) General Linear Group of n× n invertible matrices. Often also written
as GL(Rn)

O(2) Orthogonal Group

SO(2) Special Orthogonal Group

U(1) Unitary Group of complex numbers with norm 1

Notation

⊕
Direct Sum

⊗
Direct Product

Cov Covariance

E Expectation

Pr Probability function

v a vector

x a point in R2

Operators
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IndGH ρ Induced Representation of ρ from H to G, with H ≤ G

ResGH ρ Restricted Representation of ρ from G to H, with H ≤ G

vec(M) Vectorization of a matrix M .

Other Symbols

ψ(θ) 2× 2 rotation matrix associated with the angle θ

[
cos (θ) 9 sin (θ)
sin (θ) cos (θ)

]

ξ(s) 2× 2 matrix associated with the element s ∈ ({±1}, ∗)
[
1 0
0 s

]
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